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Abstract

Interbank lending markets allow banks to resolve temporary imbalances and main-
tain smooth supply of credit to the nonfinancial sector; therefore, changes to the struc-
ture of these markets may have important macroeconomic repercussions. This paper
examines the impact of shocks to the network of bank relationships (interbank net-
work) on the real sector. First, by incorporating an interbank network into a dynamic
general equilibrium model, I show that the aggregate interest rate on loans that banks
provide to firms may increase or decrease in response to a shock that destroys bank
relationships (network disruption), depending on the size of this shock and the initial
distribution of bank relationships. This is in contrast with a notion that the aggregate
interest rate on loans to the real sector unambiguously increases when the interbank
market becomes less active. Second, I show that the central bank’s policy can limit
the extent to which the shocks that destroy bank relationships transmit onto the real
sector. In particular, as the corridor between the discount window rate and the excess
reserve rate decreases, the effect of a network disruption on the real sector becomes
smaller.
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Commission. I thank Timothy Fuerst, Eric Sims, Rüdiger Bachmann, Christiane Baumeister, Saki Bigio,
Javier Bianchi, Huberto Ennis, Gary Richardson, Ned Prescott, Joseph Kaboski and Matthew Knowles for
their valuable comments and suggestions. I also thank participants at seminars at the Federal Reserve Bank
of Richmond and the University of Notre Dame for questions, comments, and insights that helped to develop
and improve this paper.

†Division of Economic and Risk Analysis, U.S. Securities and Exchange Commission; e-mail: safono-
vad@sec.gov; tel.: +1 (202) 551 3501

1

http://dashasafonova.com/safonova_interbank.pdf
mailto:safonovad@sec.gov
mailto:safonovad@sec.gov


1 Introduction

Interbank markets enhance the efficiency of the financial sector and allow banks to smoothly

supply credit to the real sector. Traditionally, these markets have been excluded from

macroeconomic and business-cycle analyses due to the perception that they are complete

and frictionless.1 However, the consequences of the distress in the financial sector observed

in recent years calls the validity of this assumption into question. Furthermore, empirical

studies of interbank markets document that banks do not typically utilize interbank markets

to their full capacity, providing evidence for barriers that prevent banks from trading with

each other.2 Such barriers can arise as a result of asymmetric information, costly coordi-

nation, geographical/time constraints, or other frictions.3 Because of these frictions, not

all banks may have the same chance of finding a trading partner in the interbank lending

market.

This paper is the first to consider bank-specific trading opportunities within a dynamic

general equilibrium model. Even though this friction has been previously investigated in a

static and/or partial equilibrium setting (for example, Allen and Gale (2000) and Freixas

et al. (1998)), the existing models that analyze the banking sector within a dynamic general

equilibrium environment abstract from bank-specific conditions in the interbank loan market,

limiting our understanding of how changes in these conditions may affect the real economy.

Given that central banks target the interest rate on short-term interbank loans, one crucial

1For example, Dynamic New Keynesian (DNK) model – the standard model used for monetary policy analysis
– entirely abstracts from the interbank market, even though, in reality, the interest rate on loans in this
market is the main monetary policy tool used by central banks.

2For empirical evidence that documents the sparse nature of interbank market participation see: Soramäki
et al. (2007) and Bech and Atalay (2010) for evidence from the federal funds market; Iori et al. (2008) for
Italian interbank market; Boss et al. (2004) for Austrian interbank market; Inaoka et al. (2004) for Japanese
interbank market; Bräuning et al. (2012) and Craig and von Peter (2014) for German interbank network;
and Vila et al. (2010) for unsecured overnight market in the United Kingdom.

3For example, Soramäki et al. (2007) find that participation in the interbank market fell following the attacks
of September 11, 2001, due to the decrease in coordination which was, most likely, a result of operational
problems. Calomiris and Carlson (2016) show that, during the National Banking era, banks in areas with
more manufacturing firms maintained more network connections. Finally, a vast literature covers a surge in
expected counterparty risk following the failure of Lehman Brothers. Some examples are Nier et al. (2007),
Gupta et al. (2013), Blasques et al. (2016), Beltran et al. (2015).
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aspect is how this transmission depends on monetary policy in an economy that features

both heterogeneous and time-varying trading opportunities in the interbank lending market.

Because banks face liquidity shocks, which arise due to desynchronized revenues and

outlays, they rely on the interbank loan market at times of cash shortages. Even though

loans from the central bank are also available, they are typically more costly than interbank

loans; therefore, banks attempt to borrow in the interbank market before relying on last-

resort loans from the monetary authority. Depending on the distribution of interbank trading

opportunities, some banks may be more successful in getting interbank loans than others,

which gives rise to heterogeneous liquidity funding costs. A bank with a higher expected

cost of financing liquidity does two things ex ante: first, it charges a higher interest rate

on loans supplied to the real sector; and second, it chooses to hold a greater share of its

assets in cash. All else equal, both actions result in a decline of a bank’s lending to the

real economy. What happens in a general equilibrium, however, depends on how the bank’s

trading opportunities compare to the trading opportunities of other banks at a given point

in time. In this paper, I provide a framework that qualifies these general equilibrium effects.

More specifically, I incorporate a network of bank relationships into the Bianchi and Bigio

(2014) framework. I define a relationship as a potential bilateral trading opportunity in the

interbank loan market. While Bianchi and Bigio (2014) bring insights from the liquidity

management literature into a dynamic macro model and propose a novel mechanism for

monetary policy transmission, they implicitly assume that all banks are connected to each

other (i.e. the interbank network is complete). By relaxing this assumption, I can address

the following unanswered questions. First, how do various network disruptions affect interest

rates on loans to the nonfinancial sector, and, consequently, aggregate lending? Second, how

does a particular shape of the interbank network matter for these dynamics? Third, how

does the amplification and propagation of network shocks depend on the central bank policy?

I consider two scenarios for network disruption shocks: an interbank market freeze, in

which all of the network connections are destroyed, and a partial network destruction, in
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which only a fraction of the network links ceases at the time of the shock. For both scenarios,

I study two general cases for the steady-state interbank network: a complete network where

all banks are connected to each other and an incomplete network in which the total number

of links (connections) is below the maximum possible number of connections. I further

consider three different sub-cases of an incomplete network. The first sub-case is the random

network, in which banks have an equal probability of being connected to any other bank in

the network. The second sub-case is the circle network, where banks have relationships with

a given number of closest neighbors. Finally, I examine the scale-free network sub-case, in

which only a small fraction of banks have many connections and the rest of banks have little

to no connections.

In the first experiment, the economy starts with a complete interbank network and is

subjected to an interbank market freeze. This shock captures a reduced level of trust in a

world with asymmetric information about the counterparty risk. Following the shock, the

expected cost of funding liquidity increases, resulting in an increase in the aggregate interest

rate and a decrease in the aggregate lending to the real sector. However, as banks can always

borrow funds from the central bank at the discount window rate, the response of the interest

rate is limited by the spread between the discount window rate and the excess reserve rate

(the interest rate corridor).4 For example, if the width of the corridor is 4 percent on an

annual basis, the aggregate interest rate increases by 40 basis points following the interbank

market freeze. Given that the model does not feature firm or bank default, the effect on the

aggregate lending is modest. In the baseline calibration, aggregate loan supply decreases by

0.25 percent on impact with the maximum decrease of 0.45 percent three periods after the

shock.5

In the second experiment, the economy starts with a complete interbank network and is

subjected to a partial network destruction. The responses of the aggregate interest rate and

aggregate lending depend largely on the size of the shock. As the fraction of connections

4This result was first discussed in Proposition 5 in Bianchi and Bigio (2014).
5These values are in line with Bianchi and Bigio (2014).
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destroyed at the time of the shock decreases from 100 percent (as in the interbank market

freeze scenario), the response of the aggregate rate becomes less positive and switches to

negative when the fraction of destroyed connections reaches a threshold value. In the baseline

calibration, the threshold value is approximately 50 percent. That is, when more than a half

of the links are terminated, the aggregate interest rate increases and total lending decreases,

and when less than a half of the connections are destroyed, the interest rate decreases and

lending increases. This result highlights that the responses of interest rates and lending

are nonlinear in the size of the network disruption, implying that smaller shocks could be

important to study separately from interbank market freezes.

Network shocks also have significant cross-sectional implications for the distribution of

bank equity: both the total and partial destruction shocks lead to a persistent increase in the

variance of equity. These distributional changes are observed because of the gradual nature

of the interbank network recovery. In particular, some banks re-establish their connections

sooner than others, gaining a competitive advantage in lending and accumulating equity at

a faster rate. On the other hand, some banks do not regain their connections for a long

time, which prevents them from lowering interest rates and increasing their supply of loans

to the real sector. This, in turn, stagnates their equity growth for multiple periods. As a

result, the standard deviation of the bank equity remains large for multiple periods after the

shock, even when the aggregate equity reverts to its pre-shock level. This result suggests that

interbank network shocks are one potential source of observed differences in bank equity.

In the third experiment, I compare the responses of variables to an interbank market

freeze in the complete network to those in the incomplete network cases (random, circle,

scale-free). I find that both the mean and the variance of the interest rates on loans to the

nonfinancial sector are highest in the scale-free network. However, the aggregate loan rate is

most responsive to the network destruction shock in the cases of random and circle networks.

The distribution of bank’s equity is most affected (relatively to the initial distribution) when

the interbank network is scale-free.
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To highlight the role of monetary policy in the transmission of network disruptions onto

the real economy, I present an experiment in which I vary the width of the interest rate

corridor (the difference between the discount window rate and excess reserve rate). In the

complete network case, the aggregate interest rate is less sensitive to the network destruction

shock when the corridor of policy rates is narrow. However, the narrower the corridor, the

longer the shock affects the banks’ equity. The amplification result holds for other network

shapes. The differences in propagation of the shock caused by the corridor adjustment are

network-specific.

The structure of the paper is as follows. Section 2 introduces the background for interbank

markets and networks. Section 3 presents the model. Section 4 discusses the alternatives

for the shape of the steady-state interbank network. Section 5 describes the choices for the

model parameters. Section 6 presents the results. Section 7 provides policy implications.

Section 8 concludes.

2 Background

In this section I discuss why interbank lending markets exist and provide a brief background

about the institutional structure of these markets in order to highlight the importance of

long-term bank relationships.

2.1 Interbank Lending Markets

Commercial bank assets can be categorized into two general categories: liquid assets (low

return) and illiquid assets (high return). Liquid assets of a typical bank include bank’s

reserves (vault cash and bank’s deposits in its account with the central bank), short-term

securities, and repurchase agreements.6 The main categories of illiquid assets in the banking

sector are commercial and industrial loans and real estate loans, more generally loans to the

6A repurchase agreement is a contract in which the seller of a security agrees to repurchase it from the buyer
at an agreed price.

6



nonfinancial sector. In this paper, I categorize all assets that can be converted to cash within

a period as liquid, and all assets that mature at some future time as illiquid. For example,

if one period is a day, a loan that matures tomorrow is considered illiquid today.

The main category on the liability side of a commercial bank is the customer deposits.

A large fraction of these deposits are demand deposits. The key characteristic of demand

deposits is that customers can withdraw them or make additional deposits at any point

during a period without a penalty. I further refer to both deposit withdrawals and additional

deposits as withdrawals, with a negative withdrawal being a deposit. When a customer makes

a withdrawal, the bank has to draw on its cash assets to meet this sudden demand. Every

period, banks choose the portfolio shares of liquid and illiquid assets, taking into account

that they may experience some withdrawals after the portfolio decision has been made.

Depending on the sign and size of deposit withdrawals, a bank can end up in three

possible situations. Figure 1 illustrates these cases. If, after the portfolio decision, a bank

experiences a negative withdrawal (deposit), the amount of liquid assets increases and the

size of the bank’s portfolio expands. This situation is referred to as having excess reserves.

If a bank experiences a positive withdrawal and the size of the withdrawal is smaller than

the amount of liquid assets, the resulting balance of liquid assets decreases and the size of

bank’s portfolio contracts. Finally, if the bank experiences a positive withdrawal and the

amount of the withdrawal is greater than the amount of liquid assets on hand, the bank has

a deficit of liquid assets. This situation is referred to as having a reserve deficit. To avoid a

default, a bank will borrow the amount of the deficit from an available source. Banks can

always take a last-resort loan from the central bank. Alternatively, they may seek a loan

at a more beneficial interest rate from a bank with excess reserves. This constitutes the

demand for liquidity. Why would a bank with excess reserves want to lend to a bank with a

reserve deficit? Because otherwise, it earns no (or lower) interest on the excess reserves. This

constitutes the supply of liquidity. Given the potential for mutually beneficial exchange, a

market naturally arises.
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liquid assets

loans to firms

deposits

shareholders
equity

original balance
sheet

liquid assets ↑

loans to firms

deposits ↑

shareholders
equity

(a) if deposits ↑

liquid assets ↓

loans to firms

deposits ↓

shareholders
equity

(b) if deposits ↓

loans to firms

borrowing

deposits ↓↓

shareholders
equity

(c) if deposits ↓↓

Note: the dashed line in the three bottom panels indicates the original size of the bank’s balance

sheet.

Figure 1. Bank’s Balance Sheet and Stochastic Withdrawals

2.2 Bank Relationships

A typical feature of an interbank lending market is that it is an over-the-counter (OTC)

market, which implies that, if a bank wants to trade, it has to find a partner first. A key

characteristic of the demand for liquidity is that a bank with a reserve deficit has to find

the lender during the same period it experiences the deposit withdrawals that lead to the

deficit. Given the OTC nature, this might be difficult to do. Additionally, banks are subject

to stochastic withdrawals every period which implies that in the absence of some longer-term

corresponding relationship with another bank(s), they start their search for trading partners

from zero every period. By creating a network of “friends”, banks can reduce this search

cost. Therefore, it is beneficial for banks to build long-term relationships with each other in

order to reduce the cost of finding a trading partner.

In the context of this paper, I think of a relationship between two banks as being on each
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Figure 2. Example of an Undirected Graph

other’s contact list. A relationship, however, is not a contract and does not obligate banks to

trade with each other. It merely implies that a bank with a deficit/excess can contact another

bank to check whether it has an excess or a deficit of reserves. The list of all relationships

constitutes the interbank network. Note that this is not the typical definition: an interbank

network is usually defined as a set of observed interbank trades. This distinction matters for

the sequence of the events within a period.

I represent the interbank network as a graph – an ordered pair G = (V,E) where V is

a set of nodes (banks) and E is a set of edges (connections, links) which are two-element

subsets of V . In general, graphs can be directed and undirected. An undirected graph is

a graph in which edges have no orientation. For example, an undirected link between two

banks implies that the two banks will trade as long as they are on the different sides of the

market, whereas a directed link specifies the exact direction of the lending relationship. I

will consider undirected graphs in this paper. Figure 2 shows an example of an undirected

network with five vertices (banks) and five edges.

A convenient representation of a network is an adjacency matrix – a square |V | × |V |

matrix where elements represent existing relationships between nodes. An unweighted ad-

jacency matrix has elements that are either 0 or 1. The adjacency matrix of an undirected

graph is symmetric. The adjacency matrix for the graph in Figure 2 is:
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A =


0 1 0 0 1
1 0 1 0 0
0 1 0 0 1
0 0 0 0 1
1 0 1 1 0



Networks can be characterized with different measures. A node degree, k, is the number

of nodes a node is connected to. The degree distribution, pk, is the probability distribution

of a node degree in a network. Network density, d, describes the portion of the potential

connections in a network that are actual connections. Another measure of networks is the

network centralization, which measures the extent to which the most connected node in the

network is central in relation to all other nodes. The most centralized network is the star

network, in which one node has the largest possible degree, N − 1, and all the other nodes

have the smallest possible degree of 1.

Based on these measures, networks can be classified in different types. A network in

which all nodes are connected to each other is a complete network. The density of complete

networks is 100%. A network with a density lower than 100% is an incomplete network.

Incomplete networks are further classified by their degree distribution. A network in which

node degree follows the binomial distribution is a random network. A concept of a random

network was introduced by Erdös and Rényi (1959). Random networks observe a small world

property – the distance between two randomly chosen nodes in a network is short. However,

random networks do not observe high clustering, which is what most real-world networks

observe.7 A network model introduced by Watts and Strogatz (1998) is an extension of

the random network model that addresses the coexistence of high clustering and the small

world property. It fails to explain, however, why high-degree nodes have a smaller clustering

coefficient than low-degree nodes. If degree distribution follows a power law, a network is

called a scale-free network. Scale-free networks were first discussed by Barabási and Albert

(1999). Scale-free networks are commonly observed in the real world. An important property

7See Barabási (2016).
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Figure 3. Network Examples

The figure displays 4 possible topologies for a network with N = 21 nodes. Each node represents

an agent, and each line represents an existing connection between two agents. Panel (a) displays

a network with the maximum number of connections, which is equal to 210. Panels (b)-(d) show

different network topologies for an incomplete network that is 40% dense. The network density is

displayed below each panel.

of the scale-free networks is the existence of “hubs” – nodes with an extremely high degree.

Removing a hub from a network may turn the network into one with a lot of disconnected

nodes. Figure 3 displays different cases for a network with 21 agents. Panel (a) depicts a

complete network and Panels (b)-(c) display network topologies for a 40% dense network.

3 Model

Time is discrete, indexed by t, and has an infinite horizon. The economy consists of a

representative household, an aggregate firm, a large number of banks, and a central bank.

The household is risk-neutral, i.e. it is indifferent between consumption and saving. The

household supplies labor to the aggregate firm. Labor is the only factor of production. The

firm is subject to a working-capital constraint and needs to borrow in order to produce in

every period. The firm treats loans from different banks as imperfect substitutes.

3.1 Banking Sector

The banking sector consists of a large number N of monopolistically competitive banks which

are indexed by i. Banks face a perfectly elastic supply of deposits. Along with the existing
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end t

Figure 4. Sequence of Events within a Period

net worth, deposits are used to fund the bank’s portfolio. There are two types of assets

that are available to banks – liquid (cash assets, reserves) which earn no return and illiquid

(loans to the firm) which earn interest. Banks choose the allocation of assets to maximize

the expected lifetime net worth.

Banks face stochastic deposit withdrawals after they allocate their portfolio and they rely

on cash assets to fulfill the demand for withdrawals. If a bank does not have enough liquid

assets to meet this sudden demand, it has to borrow the amount of the deficit from either an

another bank (at a low cost) or the central bank (at a high cost). The ability to borrow in

the interbank market depends on whether a bank has relationships with other banks. The

set of bank-to-bank relationships constitutes the interbank network. The interbank network

is given exogenously and is subject to destruction shocks.

3.1.1 Timing and Laws of Motion

Figure 4 displays the sequence of events within a period. Starting a period with some level

of net worth Eit, the bank i attracts household deposits Dit to fund new activity. The bank

allocates these funds towards issuing loans Bit to the aggregate firm, and holding cash asset

Cit. The balance sheet constraint is:

Eit +Dit = Bit + Cit (1)

Banks earn a gross interest rate Rb
it on loans and pay a gross interest rate Rd (deposit
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rate) on the household deposits which is common for all banks and constant over time. Cash

assets earn zero interest. All interest is repaid in the beginning of the next period. The

amount of household deposits that a bank can hold is limited by the capital requirement:

Dit ≤ κtEit (2)

where κt ≥ 1 is a policy parameter which imposes an upper bound on the bank’s debt-to-

equity ratio. The capital requirement is the central bank’s policy instrument that is intended

to prevent banks from taking on excess leverage.

An important feature of the model is that the deposits are callable on demand, that is,

at any point after the portfolio decisions have been made, the deposits may change by a

random fraction ωit:

ωit ∈ (−∞, 1] , ωit ∼ F (·) (3)

where F (·) is the CDF over withdrawal shocks. A negative value of ωit implies that a bank

realizes a random payment. I assume that deposits remain within the banking sector, that

is, withdrawal shocks reshuffle deposits among banks but they do not constitute bank runs:

∑
i

ωitDit = 0 (4)

When a bank experiences a deposit withdrawal, it draws its cash account by the amount of

the withdrawal, ωitDit. The resulting balances of assets and liabilities are:

D̃it = Dit − ωitDit (5)

C̃it = Cit − ωitDit (6)

B̃it = Bit (7)

By law, banks are required to hold a minimum amount of cash assets at the end of each
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period. In particular, the cash-to-deposits ratio must be above a certain threshold ρt:

C̃it ≥ ρtD̃it (8)

where ρt ∈ [0, 1] is the reserve requirement set by the central bank. Depending on the

realization of ωit, a bank can end up either with a shortage or an excess of cash assets. If a

bank experiences a shortage, it must borrow the amount that is needed to meet the reserve

requirement. I denote this amount by Xit:

X̃it = ρtD̃it − C̃it (9)

When X̃it is positive, the bank has a deficit and will take a loan from either another bank

or the central bank. Banks repay these loans at the beginning of the next period. The total

net cost of a reserve deficit rxit equals:

rxit =


rERt X̃it if X̃it ≤ 0 and excess is held at the central bank

rDWt X̃it if X̃it > 0 and borrowed from the central bank

rFFt X̃it if any X̃it and traded in interbank market

(10)

where rERt is the net interest rate that the central bank pays on excess reserves, rDWt is the

net interest rate that the central bank charges on loans to banks (the discount window rate),

and rFFt is the net interest rate that banks pay on interbank loans. The level of cash assets

evolves according to:

C ′it = C̃it + X̃it (11)

The bank’s equity at the beginning of the next period is the sum of realized gross returns

on the bank’s assets and liabilities:

Eit+1 = C ′it +Rb
itB̃it −RdD̃it − X̃it − rxit (ωit,Dit,Cit)
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By substituting the equations (5)-(7), (9), and (11) in the above , I derive the expression for

the evolution of the bank’s equity as a function of the choice variables Bit, Cit, and Dit:

Eit+1 = Rb
itBit + Cit −Rd (1−ωit)Dit − rxit (ωit,Dit,Cit) (12)

The average value of rxit depends on the bank’s ability to find trading partners in the interbank

market, which, in turn, depends on the structure of the interbank network.

3.1.2 Interbank Market

Banks can enter the interbank market for two reasons: banks with a cash shortage seek to find

a loan at a rate lower than rDWt and banks with an excess of cash seek to earn a rate higher

than rERt . I assume that an interbank loan cannot exceed the amount of the bank’s reserve

deficit. Thus, the only purpose of the interbank market in this model is for redistribution

of reserves. A bank with an excess places lending orders and a bank with a deficit places

borrowing orders. Following Atkeson et al. (2012) and Bianchi and Bigio (2014), I assume

that a bank places a continuum of orders of infinitesimal size (further referred to as $1), and

the trades occur on a dollar-per-dollar basis. The interest rate at which a trade occurs, rFFt ,

is determined by the bilateral Nash bargaining.

Problem 1 The bargaining problem between a lending order and a borrowing order is:

max
rFFt

(
rDWt − rFFt

)ξ (
rFFt − rERt

)1−ξ

where ξ is the bargaining power of the borrowing order.

The first-order condition implies that the interbank loan rate is a convex combination of the

two policy rates:

rFFt = ξrERt + (1− ξ)rDWt (13)

Note that for any Nash bargaining parameter, rERt ≤ rFFt ≤ rDWt ; therefore, banks with a
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cash deficit will always try to borrow in the interbank market before borrowing from the

central bank. Similarly, banks with excess reserves will always try to lend in the interbank

market. I assume that all borrowing orders have the same bargaining power, which implies

that the interbank lending rate is identical for all matched orders. The probabilities of

finding a matching order, however, can vary across banks, depending on the bank’s position

in the interbank network.

3.1.3 Interbank Network

An important feature of the interbank market is that, in order to trade, banks have to search

for a trading partner. This gives rise to an interbank network. I define the interbank network

as in Lenzu and Tedeschi (2012). Banks enter bilateral potential trading agreements (PTAs).

These agreements constitute a promise to engage in trade when one of the banks has a cash

surplus and another has a cash deficit. If the two banks hold a PTA bt end up on the same

side of the market (both are lenders or both are borrowers), the PTA can not be enforced.

Definition 1 The interbank network is an undirected graph (N,G) where N = [1, ..., n]

is the set of nodes (banks) and G is the n × n symmetric adjacency matrix with elements

Gijt ∈ {0, 1} that represent a relationship between banks i and j in the following way:

Gijt = Gjit =

 1 if there exists a PTA between i and j

0 if there is no PTA between i and j

where Gii = 0 ∀ i, i.e. a bank cannot be connected to itself.

The adjacency matrix Gt evolves exogenously and is known in the beginning of a period.

If every bank has a PTA with every other bank in the network, then the interbank network

is complete; if there are no PTAs between any banks, then the interbank network is empty.

When the network is incomplete, banks have different probabilities of finding a trading

partner in the interbank market.
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Consider a bank i with a deficit of reserves. What is the probability that i can get a loan

from another bank? It depends on (1) how many banks with a cash surplus i is connected

to (lending neighbors) and (2) how many banks with a cash deficit i’s lending neighbors are

connected to (borrowing neighbors). Recall that a bank i has a cash deficit if Xit > 0 and a

cash surplus otherwise. The mass of lending that is available to i is the sum of cash surpluses

from the i’s lending neighbors:

Υ+
i =

∑
j

GijtXjtI(Xjt≤0) (14)

where i’s neighbors are indexed by j and I(·) is the indicator function. The mass of borrowing

that is available to the i’s lending neighbors is:

Υ−i =
∑
k

I(Kkt≥1)XktI(Xkt>0) , K
1×N

=
∑
j

GijtGjt (15)

where the neighbors of i’s neighbors are indexed by k. I assume that borrowing and lending

orders are paired at random. If Υ+
i < Υ−i , then there is more borrowing orders than lend-

ing orders in the i’s neighborhood implying that some of the borrowing orders will not be

matched. If Υ+
i ≥ Υ−i , however, all borrowing orders will be matched.8 The probability that

the bank i can fund its cash deficit in the interbank market equals to:

pBLit =min

{
1,

E
[
Υ+
i

]
E
[
Υ−i
]}= min

{
1,

∑
j GijtP (Xjt≤0) E[Xjt|Xjt≤0]∑

k I(Kkt≥1)P (Xkt>0) E[Xkt|Xkt>0]

}
(16)

and the probability that i will borrow from the central bank is 1−pBLit . The expected per-unit

cost of a reserve deficit for a bank i:

χBit = pBLit r
FF
t +

(
1− pBLit

)
rDWt (17)

8This type of matching was used Bech and Monnet (2014) and Bianchi and Bigio (2014)
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Similarly, if i is a lending bank, the probability of its lending that is matched in the

interbank market is:

pLBit =min

{
1,

E
[
Γ−i
]

E
[
Γ+
i

]}=min

{
1,

∑
j Gijt P (Xjt>0) E[Xjt|Xjt>0]∑

k I(Kkt≥1)P (Xkt≤0) E[Xkt|Xkt≤0]

}
(18)

where Γ−i is the mass of borrowing that is available from the i’s borrowing neighbors and

Γ+
i is the mass of lending available to the i’s borrowing neighbors. The expected return on

a unit of the i’s cash surplus equals to:

χLit = pLBit r
FF
t +

(
1− pLBit

)
rERt (19)

In general, Υ+
i 6= Γ+

i and Υ−i 6= Γ−i , meaning that the deposit withdrawals cannot be perfectly

insured against. This is because banks can trade only with banks that they are connected

to. As a result, the amunt of the total interbank trading is weakly less than the aggregate

cash deficit in the banking sector. Intuitively, in such setup it is more burdensome for a

bank to end up with a reserve deficit compared to the case where all banks are connected to

each other. Equation (10) which defines the total cost of a reserve deficit can be rewritten

in terms of χLit and χBit :

rxit =

 χLit [(ρt+(1−ρt)ωit)Dit−Cit] if (ρt+(1−ρt)ωit)Dit−Cit ≤ 0

χBit [(ρt+(1−ρt)ωit)Dit−Cit] if (ρt+(1−ρt)ωit)Dit−Cit > 0
(20)

This cost has a discontinuity at the point where the bank’s deficit is zero. This occurs when

the value of the withdrawal shock equals to:

ω∗it=
(
Cit
Dit
− ρt

)
/(1− ρt) (21)

If the realized value of the withdrawal shock is below the threshold value ω∗it, then the bank

has excess reserves, which can be lent out at χLit. If the realized value of the withdrawal
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shock is above ω∗it, then the bank has a reserve deficit and has to get a loan at the cost χBit .

By rewriting the expression for the bank’s deficit in terms of ω∗it and taking an expectation

over the withdrawal shocks, I find the expected total net cost of a cash deficit is:

Eωr
x
it = (1−ρt)Dit

[
χBit (ω̄−ω∗it)+

(
χBit−χLit

)(
ω∗itF (ω∗it)−

∫ ω∗it

−∞
ωf(ω)dω

)]
(22)

where ω̄ is the mean of withdrawal shocks and f(ω) is the PDF over withdrawal shocks. If

the chosen ratio of cash to deposits Cit/Dit is below the reserve requirement ρt, then the

future value of the withdrawal shock must be negative, i.e. bank must experience a deposit,

for a bank not to have a reserve deficit. If, however, the bank chooses to hold higher than

required cash-to-deposits ratio, it may still end up with a non-negative cash balance, even if

it experiences a withdrawal.

3.1.4 Bank’s Problem

Banks maximize the expected net worth (equity) subject to the balance sheet constraint and

the capital requirement:

Problem 2 Banks solve the following maximization problem:

max
Dit,Bit,Cit

Et

∞∑
j=1

(βγ)j Λt+jEit+j

s.t. Eit+1 = Rb
itBit + Cit −Rd (1−ωit)Dit − rxit (ωit,Dit,Cit)

Eit = Bit + Cit −Dit

Dit ≤ κtEit

Bit, Cit, Dit ≥ 0

where βΛt is the household’s stochastic discount factor and γ is the additional impatience

parameter for banks. I substitute the expression for the evolution of equity into the objective
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and write the bank’s value function at time t as follows:

Vt = max
Dit,Bit,Cit

E βγΛt

[
Rb
itBit + Cit −Rd (1−ωit)Dit − rxit (ωit,Dit,Cit)

]
s.t. Eit = Bit + Cit −Dit

Dit ≤ κtEit

Bit, Cit, Dit ≥ 0

Further substitution and simplification results in:

Vt = max
Dit,Cit

βγΛt

[
Rb
it (Eit − Cit +Dit) + Cit −Rd (1− ω̄)Dit − Eωr

x
it (Dit,Cit)

]
s.t. Dit ≤ κtEit

Bit, Cit, Dit ≥ 0

Since Eit is known at the time of decision, solving for the loans, reserves, and deposits as

fractions of equity is equivalent to solving the original bank’s problem. I define the ratios:

[dit bit cit eit+1] ≡
[
Dit

Eit

Bit

Eit

Cit
Eit

Eit+1

Eit

]
(23)

where eit+1 is the growth rate of bank’s equity. Rewriting the bank’s problem in terms of

equity shares:

max
dit,cit

Rb
it −

(
Rb
it − 1

)
cit +

(
Rb
it − (1−ω̄)Rd

)
dit − Eωr

x
it (dit,cit)

s.t. dit ≤ κt

cit, dit ≥ 0
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Next, I define the cash-to-deposits ratio (liquidity ratio), Lit:

Lit =
cit
dit

(24)

and transform the bank’s problem as follows:9

Rb
it + max

dit∈[0,κt]
dit

[
Rb
it − (1−ω̄)Rd + max

Lit∈[0,1+dit]

{
−
(
Rb
it − 1

)
Lit − Eωr

x
it (1,Lit)

}]

The above shows that the bank solves two separate problems: first, it chooses the fraction

of deposits that it will hold in cash assets, and then it picks the optimal leverage scale.

The non-standard feature of the liquidity-management problem is that the cost of the cash

deficit, rxit, has a discontinuity at the point ω∗it. Differentiating the objective with respect to

Lit gives the bank i’s loan supply equation:

Rb
it − 1 = −∂Eωrxit (1,Lit)

∂Lit
(25)

where

Eωr
x
it (1,Lit) = (1−ρt)

[
χBit (ω̄−ω∗it) +

(
χBit−χLit

)(
ω∗itF (ω∗it)−

∫ ω∗it

−∞
ωf(ω)dω

)]

and ω∗it = (Lit − ρt) /(1− ρt). The left-hand side of equation (25) is the opportunity cost of

holding cash assets over loans and the right-hand side is the expected benefit of holding an

additional unit of cash asset. This optimality condition provides a unique solution for Lit.

Given the optimal level of Lit, the return on additional unit of leverage is:

RL
it = Rb

it − (1−ω̄)Rd −
(
Rb
it − 1

)
L∗it − Eωr

x
it (1,Lit) (26)

The leverage scale problem is linear in RL
it. Thus, if this return is positive, the bank will pick

9Since ωit ≤ 1, then it must be that Lit = cit
dit
≤ 1. bit = 0 is ruled out by the shape of the loan demand.
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the maximum possible share of deposits, κt. Otherwise, the bank will choose to hold zero

household deposits. The expected return on the optimal portfolio is then:

Eωe
∗
it+1 = Rb

it + max
{

0, κtR
L
it

}
(27)

Once the optimal portfolio shares are found, the optimal levels of loans, cash, and deposits

can be calculated as follows:

[D∗it B
∗
it C

∗
it] = Eit × [d∗it b

∗
it c

∗
it] (28)

This concludes the bank’s problem.

3.2 Real Sector

The representative household obtains utility from consumption, Ct, and disutility from labor,

Ht. The household can save by supplying deposits DA
t to the banking sector.

Problem 3 The household solves the following maximization problem:

max
Ct,Ht,DAt

∞∑
t=0

βt
[
Ct −

H1+ν
t

1 + ν

]
s.t. DA

t + Ct = WtHt +RdDA
t−1 + Πt + Tt

where Wt is the real wage rate, Πt is the firm’s profit, Tt is the tax transfer, and ν is the

inverse of the Frisch elasticity. The labor supply curve is:

Ht = W
1
ν
t (29)
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which implies that the household’s total wage income is W
ν+1
ν

t . If Rd = 1
β
, the household is

indifferent between consumption and saving, and:

Ct ∈ [0, Yt] , DA
t = Yt − Ct (30)

where Yt is the output of the aggregate firm.

The profit-maximizing firm uses the household’s labor to produce output according to

the following production function:

Yt = AtH
1−α
t (31)

where At is a technology index, and 1 − α is the labor share. The firm has to pay workers

before the output is realized, therefore, to cover the wage bill, it borrows the amount IAt

from the banking sector:

WtHt = IAt (32)

IAt is collected via the CES technology:

IAt =

[∑
i

λ
1
ε
i I

ε−1
ε

it

] ε
ε−1

(33)

where Iit is borrowing from bank i, λi is the bank i’s share, and ε is the elasticity of substi-

tution between loans from different banks. The firm repays the loan principal and accrued

interest in the beginning of the next period. The total repayment to the banking sector is∑
iR

b
itIit. The firm never defaults on its loans.
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Problem 4 The aggregate firm solves the following maximization problem:

max
IAt ,Iit,Ht

∞∑
t=0

βt

[
AH1−α

t −WtHt + IAt −
∑
i

Rb
it−1Iit−1

]

s.t. WtHt = IAt

IAt =

[∑
i

λ
1
ε
i I

ε−1
ε

it

] ε
ε−1

By taking the first-order conditions and imposing the labor market clearing, I find the

demand curve for a loan from the bank i:

Rb
it =

(1− α)At
β

[
IAt
] 1
ε
− ν+α
ν+1

[
Iit
λi

]− 1
ε

, (34)

the aggregate repayment of loans to the banking sector:

∑
i

Rb
itIit =

(1− α)At
β

[
IAt
] 1−α
ν+1 =

1− α
β

Yt (35)

and the firm’s profit is:

Πt = AtH
1−α
t −

∑
i

Rb
it−1Iit−1 = Yt −

1− α
β

Yt−1 (36)

Refer to Appendix D for the details of derivations.

3.3 Central Bank

The central bank starts a period with M0
t reserves and D

CB

t bank deposits. It issues new

reserves, ∆
CB

t , receives interest on discount window loans, pays interest on excess reserves,

and makes a transfer Tt to the household. The laws of motion for the deposits and reserves
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respectively are:

D
CB

t+1 = D
CB

t +∆
CB

t + rDWt X
−

t − rERt X
+

t − Tt (37)

M0
t+1 = M0

t +∆
CB

t (38)

where X
−
t is the total amount of loans to the banking sector and X

+

t is the aggregate excess

reserves held at the central bank. By combing the laws of motion, I derive the central bank’s

budget constraint:

M0
t+1 −M0

t = D
CB

t+1 −D
CB

t − rDWt X
−

t + rERt X
+

t + Tt (39)

The central bank’s policy rates satisfy:

rDWt ≥ rERt

The difference between the two rates constitutes the interest rate corridor. The central bank

chooses rDWt and rERt to target a particular level of the interbank loan interest rate, rFFt .

3.4 Exogenous Processes

The interbank network is given exogenously. I assume that there exists a steady-state in-

terbank network and that the degree distribution of bank’s connections is orthogonal to the

distribution of the withdrawal shocks.

3.4.1 Steady-State Interbank Network

I consider two general cases for the steady-state interbank network: a complete interbank

network and an incomplete interbank network. For the incomplete case, I consider three sub-

cases: a random interbank network, a circle interbank network, and a scale-free interbank

network. For each case, I find how centralized the interbank network is. I measure network
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centralization with the Freeman’s centralization index:

Ck =

∑
i (k

max − ki)
(N − 1) (N − 2)

(40)

where the numerator is the sum of differences between the highest degree in the network

and degrees of other banks and the denominator is the maximum centralization that can be

attained in a graph with N nodes. I discuss each network case below and summarize the

cases in Table 1.

Table 1. INTERBANK NETWORK TOPOLOGY CASES

Network Degree distribution K k̄ Ck

Complete Dirac delta centered at N−1 N(N−1)
2

N−1 0
Circle Dirac delta centered at k∗ Nk∗/2 k∗ 0
Random binomial with p = k∗/(N − 1) Nk∗/2 k∗ low
Scale-free power law with γ=3, m = k∗/2 Nk∗/2 k∗ high

In the complete network, all banks are connected to each other. The total number of

connections K and the bank degree k take their maximum possible values,

KC = Kmax = N (N − 1) /2 (41)

kCi = kmax = N−1 (42)

respectively. Here, all banks have an equal number of connections and the network central-

ization index is zero.

In the incomplete network, not all banks are connected to each other, i.e. the number of

connections is below the network’s capacity:

KI =
k̄N

2
< Kmax (43)

where k̄ is the average degree of a bank. Here, individual banks may differ in their degree. I

consider three different cases of the incomplete network. For comparison, I set the average
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degree k̄ to equal k∗ for all the sub-cases, such that the total number of connections is the

same in each network.

In the circle network, each bank is connected to k∗ closest banks and the total number

of links is Nk∗/2. Degree distribution of a circle network is a Dirac delta function centered

at k∗. Since all banks have the same number of connections, the centralization index of the

circle network is zero.

The degree distribution of a random network is binomial and the probability that a bank

is connected to k other banks is:

pk =

(
N − 1

k

)
pk(1− p)N−1−k (44)

The average degree of a random network is k̄ = p(N − 1) and the centralization index of a

random network tends to be close to zero.

The degree distribution of the scale-free network follows a power law and the probability

that a bank is connected to k other banks is:

pk = ak−γ, 2 < γ ≤ 3 (45)

where a is a normalization constant.10 By the result in Klemm and Eguiluz (2002), the

average degree of a scale-free network is:

k̄ =
√

2a (46)

Compare to other types of the incomplete network, scale-free networks observe high network

centralization.

I denote the degree distribution of the steady-state network by pssk . The steady-state

10Follows from a Barabási-Albert model where a = 2m2. Given an initial network with m0 nodes, m new
nodes is added to each node at each step until the network reaches a size N . Typically, m0 = m. See
Barabási and Albert (1999) for more details.
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Figure 5. Single Iteration of a Degree-Preserving Randomization Algorithm for a Four-Bank Network

network at time t is a particular realization of the network implied by pssk . The number of

connections in this network is:

Kss =
1

2

N∑
i=1

kssi , Kss ≤ Kmax = N (N − 1) /2 (47)

where kssi is the steady-state degree of the bank i.

I use the algorithm proposed in Maslov and Sneppen (2002) to generate the steady-state

network. Each network realization is random, however, all nodes have the same degrees as

in the original (null) network. The algorithm works as follows. First, a random edge (i, j)

is selected from the null network. Next, a second random edge (u, v) is selected such that

i 6= u, j 6= v, and edges (i, v) and (j, u) do not already exist in the network. Then, edges

(i, j) and (u, v) are removed from the network and edges (i, v) and (j, u) are added. This

process is repeated until each link in the null network is rewired at least once. Figure 5

demonstrates an example for a single iteration of this algorithm.

3.4.2 Interbank Network Shocks

At the time of a shock, a fraction ζ ∈ [0, 1] of Kss links is removed. In the baseline model, the

subset of links that are removed is chosen at random. The number of remaining connections

at the time of the shock is (1− ζ)Kss. In the next period, a fraction of the destroyed
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connections s ∈ [0, 1] are reestablished. Here, s ∈ [0, 1] corresponds to the speed with which

the network is rebuilt. The resulting number of links one period after the shock is:

Kt+1 = (1− ζ)Kss + sζKss (48)

A list with sζKss of new edges is generated according to the degree-preserving randomization

process. At t+ 2, if the number of existing connection is below the original number of links,

s(1 − s)ζKss of links are rebuilt. Otherwise, , no new connections are created. A general

formula for the total number of links in the network j periods after the shock is:

Kt+j =

 Kt+j−1 + s
∑j

n=0(−s)nζKss if Lt+j−1 < Kss

Kss if Lt+j−1 = Kss
(49)

3.4.3 Withdrawal Shocks

I assume that withdrawal shocks ωit are drawn from the logistic distribution FL(ω) with the

mean ω̄ and the standard deviation σ:

FL(ω) =
1

1 + e
ω̄−ω
σ

To account for the fact that ωit is a fraction that takes a maximum value of 1, I truncate

the distribution FL(ω) at 1:

F (ω) =
FL(ω)

FL(1)

I assume that F (ω) is time-invariant.
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3.5 Market Clearing

Deposit Market. Supply of deposits must equal demand for deposits:

DA
t =

∑
i

Dit (50)

Money market. Cash assets held by banks during the decision stage must equal the

central bank’s supply of money: ∑
i

Cit = M0
t (51)

The total amounts borrowed and held at the central bank respectively are:

X
−

t =
∑
i

I
(
X̃it > 0

)
X̃it

(
1− pBLit

)
(52)

X
+

t =
∑
i

(
1− I

(
X̃it > 0

))
X̃it

(
1− pLBit

)
(53)

Loan Market. The supply of loans from the bank i equals to the firm’s demand for

loans from the bank i:

BS
it = BD

it (54)

Appendix E shows the full list of equilibrium conditions.

4 Theoretical Analysis

I define the net loan rate that bank i charges the firm as rbit = Rb
it − 1. The optimality

condition (25) can be rewritten as:

rbit = χBit −
(
χBit − χLit

)
F (ω∗it) (55)
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where ω∗it = (Lit − ρt) /(1− ρt) is the threshold value of the withdrawal shock that makes

the bank’s deficit equal zero. Rewriting χBit and χLit in terms of the policy rates rERt and rDWt

results in:

χBit = ξpBLit r
ER
t +

(
1− ξpBLit

)
rDWt (56)

χLit =
(
1− (1− ξ) pLBit

)
rERt + (1− ξ) pLBit rDWt (57)

I substitute the above definitions into the optimality condition (55) to express the loan rate

as a function of policy rates:

rbit = rDWt −
(
rDWt −rERt

)
F
(
Lit−ρt
1−ρt

) (
1−(1−ξ) pLBit

)
︸ ︷︷ ︸

prob. of interbank match

if lender

+
(

1−F
(
Lit−ρt
1−ρt

))
ξpBLit︸ ︷︷ ︸

prob. of interbank match

if borrower

 (58)

Holding the cash-to-deposits ratio constant, there are three exogenous factors that affect

the loan rate. First, the interest rate on the loans to the real sector is bounded above by

the discount window rate rDWt . The lower the discount window rate is, the less costly the

loans are to the firm. Second, the corridor between the discount window rate and the excess

reserves rate, rDWt −rERt , determines how low the loan rate can be. If the width of the corridor

is zero, than the loan rate is set at the discount window rate level. As the difference between

the two policy rates increases, all else equal, the loan rate decreases. Finally, the loan rate

depends on the probabilities of finding a trading partner in the interbank market, pLBit and

pBLit . In general, these probabilities do not move proportionally to each other – sometimes

both will increase or decrease and sometimes they will move in the opposite directions,

depending on the state of the interbank network. It is useful to consider the limiting cases

for the interbank network.

When the network is empty, banks have a zero chance of finding a trading partner in

the interbank network, that is pLBit = pBLit = 0. The loan rate in this case is common across

31



banks and equals to:

rb,Et = rDWt −
(
rDWt − rERt

)
F
(
Lit−ρt
1−ρt

)
(59)

When the network is complete, the matching probabilities are common across banks but

they are not necessarily equal to each other:

pLBit = pLBt = min {1,Ψ} and pBLit = pBLt = min

{
1,

1

Ψ

}

where

Ψ ≡ −
(1−F (ω∗t ))

∫ 1

ω∗t
(ω − ω∗t )f(ω)dω

F (ω∗t )
∫ ω∗t
−∞ (ω − ω∗t )f(ω)dω

≥ 0

is the total mass of borrowing orders relative to the total mass of lending orders in the

banking sector. If Ψ > 1, then, on aggregate, there is an expected cash deficit in the

banking sector. This happens when, on average, banks choose to set their cash-to-deposits

ratio at the level that is smaller than the reserve requirement ρt. In this case, the loan rate

in the complete network will be higher than it is in the empty network. If, Ψ ≤ 1, however,

the loan rate in the complete network will always be lower than it is in the empty network.

Figure 6 displays these cases for a given choice of Lt. As Ψ increases, the loan rate in the

complete network decreases.

When the interbank network is incomplete, the probabilities pLBit and pBLit will vary with

the type of the network. Their changes may have an asymmetric effect on the loan rate.

Depending on the different combinations of the two probabilities, the loan rate can be above,

below, or equal to the loan rate in the empty or complete interbank networks. Figure 7 shows

the possible values of the loan rate for different pairs of pLBit and pBLit .

5 Quantitative Exercises

I set the household’s discount factor to 1, which implies that the gross interest rate on the

household deposits is 1. I assume a constant CES share for each bank, λ = 1/N . I set
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Figure 6. Loan Rate as a Function of Ψ

Figure 7. Loan Rate as a Function of Interbank Matching Probabilities
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Table 2. PARAMETER VALUES

Parameter Value Definition

β 1.00 household’s discount factor
α 0.00 capital input share
1/ν 2.50 Frisch elasticity of labor supply
Ass 1.00 steady-state firm productivity
ε 5.00 elasticity of substitution between loans
λ 1/N bank’s share in loan aggregator
ξ 0.50 bargaining power of a borrower in the interbank market
ω̄ 0.00 mean of withdrawal shocks
σ 0.10 standard deviation of withdrawal shocks
rERt 0.00% annual interest rate on excess reserves
rDWt 2.50% annual discount window rate
rFFt 1.25% annual target interbank loan rate
N 100.00 number of banks
ζ 0.50 fraction of links destroyed at the time of the shock
s 0.25 fraction of destroyed connections rebuilt each period after the shock
k∗ 0.20 average degree of a bank in incomplete network
κss 10.00 capital requirement to match 10% capital ratio
Lss 5.00% steady-state cash-to-deposits ratio
γ 0.97 bank’s discount factor
ρss 0.05 reserve requirement

the annual net interest rate paid on excess reserves to rERt = 0 and the annual discount

window rate to rDWt = 2.5%. I assume equal bargaining power of borrowers and lenders in

the interbank market, which implies the value of ξ = 0.5 and the central bank’s target for the

interbank loan rate rFFt = 1.25%. I set κss = 10, such that the steady-state deposit-to-equity

ratio is 10%. I set the reserve requirement to 5% and the bank’s discount factor at γ = 0.97.

Table 2 states the full list of parameters.

5.1 Static Network

Figure 8 displays the distributional properties of the loan rates and equity growth rates for

the complete, circle, random, and scale-free interbank networks. The incomplete networks

exhibit more variation in both the loan rates and the equity growth rates, compared to those

in the complete network case. As the incomplete network becomes more centralized, the

dispersion of both loan rates and equity growth rates increases, reaching its largest value
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Figure 8. Empirical Distribution of Interest Rates and Equity Growth Rates

The figure displays results for 4 different cases of interbank network with 100banks based on 10,000

simulations. The left panel shows the distribution of bank’s network degree, the middle panel

displays the net annualized loan rates, expressed in percentages. The right panel displays the

distribution of bank’s equity growth rates, expressed in percentages. Vertical axes are probabilities.

in the scale-free case. The median loan rate is the lowest in the complete network. The

scale-free network observes a bimodal distribution of loan rates, where a small number of

banks set the loan rate to the level which is lower than it is in the complete network case,

and the rest set their loan rates at a relatively high level.

5.2 Network Shocks

Next, I consider network destruction shocks of different sizes.
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5.2.1 100% Destruction of Complete Network

First, I analyze a removal of all the interbank connections in a complete network. I call this

scenario an interbank market freeze. Figure 9 displays the impulse responses of economic

variables. When banks cannot trade with each other, they always have to use discount

window loans if they observe a reserve deficit. Thus, banks observe the highest possible cost

of a liquidity deficit at the time of the shock. On impact, the aggregate loan rate increases

and banks increase their holdings of cash assets relatively to loans. As banks experience a

higher cost of liquidity funding and a drop in loan issuances, the aggregate equity in the

banking sector decreases. Due to the decrease in loan supply, the firm’s output contracts

and household wages drop. As a result, the household provides less deposits to the banking

system in the next period, which results in a further decline of aggregate lending and bank

equity. Although banks initially choose to hold more cash relatively to loans, the consequent

drop in deposits results in an overall reduction of the banking sector’s portfolio.

Figure 10 displays the snapshots of the loan rate and the equity growth rate distributions

at specific times after the shock. When the interbank network is destroyed, not only the

distributional mean of the loan rates increases, but the variance of loan rates also goes up.

Although the mean converges back to the initial level quite quickly, the variance in individual

banks’ loan rates persists for multiple periods. The distributional changes in Figure 10 are

observed because of the “uneven” recovery of the interbank network. In particular, because

only some banks get to rebuild their network connections early after the network shock, they

get a competitive advantage over others and can accumulate equity faster.

5.2.2 Partial Destruction of a Complete Network

Figure 11 displays the responses of variables to a partial network destruction shock. When

only some of the network connections are removed, the expected cost of a liquidity deficit

does not change by as much as it does in the interbank market freeze scenario. As a result, the

aggregate loan rate changes by less on impact. Interestingly, the direction of the aggregate
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Figure 9. Complete Network Destruction Shock (100 simulations)

The figure displays impulse responses to removal of 100% links for a network with 100 banks.

Vertical axes are percent deviations from steady state for level variables and deviations from steady

state in percentage points for interest rates and standard deviations. Standard deviations σ are in

relative terms.

loan rate’s response changes as the size of the network shock decreases. In particular, there

exists some threshold value, ζ∗, such that when less than ζ∗ of connections are destroyed, the

aggregate loan rate decreases on impact, as opposed to increasing in the case when more that

ζ∗ fraction of links are removed from the network. This is because assets allocation decisions

are different between the two regimes. In particular, on average, banks increase their loan

issuances and decrease cash holdings if ζ < ζ∗, whereas they do the opposite if ζ ≥ ζ∗. In

both cases, however, equity decreases, resulting in drop of portfolio size one period after the

shock.
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Figure 10. Loan Rates and Equity following the Network Shock

The figure displays distributions during particular times after the shock. The left panel shows the

distribution of interest rates. Interest rates are expressed in percent. The right panel displays the

distribution of bank’s equity. Vertical axes are probabilities.

5.2.3 Shocks to Networks with Different Topologies

Next, I compare how the responses of variables to network disruption shocks in the com-

plete network compare to the responses in the circle, random, and scale-free networks. The

variables behave differently, depending on the initial density and topology of the incomplete

network. Figures 12 and 13 display the results.

If the incomplete networks are initially 60 percent dense, the aggregate loan rate increases

following the shock by a much smaller amount initially than it does in the complete network

case. The effect on banks’ equity is also smaller if the network is incomplete. However,

the shock persists for much longer when the incomplete network is shocked compared to

the destruction of the complete network. Note that when the incomplete networks are as

38



Figure 11. Partial Destruction of Complete Network

The figure displays impulse responses to removal of different percentage of links , ζ, in a network

with 100 banks. Vertical axes are percent deviations from steady state for level variables and devi-

ations from steady state in percentage points for interest rates and standard deviations. Standard

deviations σ are in relative terms.

dense as 60 percent, the difference in responses between the different types of the incomplete

networks are not as pronounced.

When I decrease the incomplete network density to 10 percent, the aggregate loan rate

decreases following the destruction shock as opposed to increasing for the 60-percent dense

networks. However, one period after the shock it increases above the steady-state level and

then gradually decreases. In the scale-free and random network cases, the loan rate falls

below the initial level once again three periods after the shock. Compare to the complete

network case, the destruction shock to the 10-percent dense incomplete networks is not as
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Figure 12. Interbank Market Freeze in Different Networks (60% dense)

The figure displays impulse responses to removal of all links for networks with different topologies.

Vertical axes are percent deviations from steady state for level variables and deviations from steady

state in percentage points for interest rates and standard deviations.

persistent. When it comes to the evolution of banks’ equity, the scale-free and random

networks observe an initial decline followed by a rise above the initial level two periods after

the shock. This is not the case for the complete and circle networks – the aggregate equity

remains below the initial level until the shock dissipates. I also consider a partial destruction

of incomplete networks. I consider the case of 20-percent dense networks. The results are

presented in Figure 14.
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Figure 13. Interbank Market Freeze in Different Networks (10% dense)

The figure displays impulse responses to removal of all links for networks with different topologies.

Vertical axes are percent deviations from steady state for level variables and deviations from steady

state in percentage points for interest rates and standard deviations.
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Figure 14. Partial Destruction of Networks with Different Topologies

The figure displays impulse responses to removal of half of the links in networks with different

topologies. Vertical axes are percent deviations from steady state for level variables and deviations

from steady state in percentage points for interest rates and standard deviations.
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Figure 15. Interest Rate Corridor and Network Destruction Shock (complete network)

The figure displays impulse responses to removal of all links in the complete network for different

interest rate corridors. Vertical axes are percent deviations from steady state for level variables

and deviations from steady state in percentage points for interest rates and standard deviations.

6 Policy Implications

Next, I consider the interbank network destruction shock for different central bank policy

rates. Recall that the central bank targets the interest rate on interbank loans, which is

equal to rFFt = ξrERt + (1− ξ)rDWt . I conduct an experiment where the interest rate corridor,

rDWt − rERt , is changed such that rFFt is kept constant for all cases of the corridor. Figure 15

displays the responses of variables to a 100% network destruction shock for the complete

interbank network. When the corridor is at 2.5% (relatively wide), banks’ equity reduces by

approximately 0.9 percent more at the time of the shock than it does in a narrow corridor

case. However, the shock propagates (in the response of equity) for a longer time when the

interest rate corridor is narrow.

I next check how the interest rate changes affect the economy for the different cases of

the incomplete interbank network. Figures 16-18 display the results. The complete case

outcomes hold for all the incomplete network cases.
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Figure 16. Interest Rate Corridor and Network Destruction Shock (circle network)

The figure displays impulse responses to removal of all links in the complete network for different

interest rate corridors. Vertical axes are percent deviations from steady state for level variables

and deviations from steady state in percentage points for interest rates and standard deviations.

Figure 17. Interest Rate Corridor and Network Destruction Shock (random network)

The figure displays impulse responses to removal of all links in the complete network for different

interest rate corridors. Vertical axes are percent deviations from steady state for level variables

and deviations from steady state in percentage points for interest rates and standard deviations.

Figure 18. Interest Rate Corridor and Network Destruction Shock (scale-free network)

The figure displays impulse responses to removal of all links in the complete network for different

interest rate corridors. Vertical axes are percent deviations from steady state for level variables

and deviations from steady state in percentage points for interest rates and standard deviations.
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7 Conclusion

This paper presents a dynamic macro model with an agent-based banking sector where banks

are interconnected with each other via the interbank network. The quantitative exercises

show that the structure and dynamics of the interbank network are essential for our under-

standing how the financial sector influences the real economy. In particular, the response of

the economy to an interbank market freeze is qualitatively different from the response to a

smaller interbank network disruption, which implies potentially different strategies for mon-

etary policy. Depending on the central bank’s policy, the shocks to the interbank network

may matter more or less for aggregate lending. This presents a potential trade-off for mon-

etary policy. Ongoing work includes further investigation of how central banks may be able

to mitigate the distress in the financial sector. One other extension that is a subject of the

ongoing research is embedding an endogenous mechanism of interbank network formation

into the model.
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A Proofs

A.1 Derivation of the Equation for the Total Expected Cost of a

Reserve Deficit

Taking an expectation over bank’s deficit of cash assets:

Eωr
x
it=χ

L
it

∫ ω∗it

−∞
[(ρt+(1−ρt)ω)Dit−Cit]f(ω)dω (60)

+ χBit

∫ 1

ω∗it

[(ρt+(1−ρt)ω)Dit−Cit]f(ω)dω

Using the definition for the threshold value of the withdrawal shock:

ω∗it=
(
Cit
Dit
− ρt

)
/(1− ρt),

the bank’s deficit can be rewritten as:

Xit ≡ (ρt+(1−ρt)ωit)Dit−Cit ≡ (1−ρt)Dit(ωit − ω∗it)

Substituting the above in (60):

Eωr
x
it= (1−ρt)Dit

[
χLit

∫ ω∗it

−∞
(ω − ω∗it)f(ω)dω+χBit

∫ 1

ω∗it

(ω − ω∗it)f(ω)dω

]
(61)

Rewriting the second integral:

∫ 1

ω∗it

(ω − ω∗it)f(ω)dω =

∫ 1

−∞
(ω − ω∗it)f(ω)dω −

∫ ω∗it

−∞
(ω − ω∗it)f(ω)dω

= ω̄ − ω∗it −
∫ ω∗it

−∞
(ω − ω∗it)f(ω)dω
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where ω̄ is the mean of withdrawal shocks. Substituting in (61):

Eωr
x
it = (1−ρt)Dit

[
χLit

∫ ω∗it

−∞
(ω−ω∗it)f(ω)dω+χBit

(
ω̄−ω∗it−

∫ ω∗it

−∞
(ω − ω∗it)f(ω)dω

)]
= (1−ρt)Dit

[(
χLit − χBit

)∫ ω∗it

−∞
(ω − ω∗it)f(ω)dω + χBit (ω̄ − ω∗it)

]
= (1−ρt)Dit

[
χBit (ω̄ − ω∗it) +

(
χBit − χLit

)(
ω∗itF (ω∗it)−

∫ ω∗it

−∞
ωf(ω)dω

)]

A.2 Derivation of the Loan Supply Equation

Recall the optimality condition (25):

Rb
it = −∂Eωrxit (1,Lit)

∂Lit

where

Eωr
x
it (1,Lit) =

Eωrxit (Dit,Cit)

Dit

Differentiating with respect to Lit:

∂Eωrxit (1,Lit)

∂Lit
= −χBit +

(
χBit−χLit

)(
F
(
Lit−ρt
1−ρt

)XXXXXXXXXX
+
Lit−ρt
1− ρt

f
(
Lit−ρt
1−ρt

)XXXXXXXXXX
−Lit−ρt

1− ρt
f
(
Lit−ρt
1−ρt

))
= −χBit +

(
χBit−χLit

)
F

(
Lit−ρt
1− ρt

)

Substituting in (25):

Rb
it = χBit −

(
χBit − χLit

)
F

(
Lit−ρt
1− ρt

)
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B Matching Probabilities

Banks have to make portfolio decisions before the deposit shocks are realized. I define a

vector of bank deficits:

Xit = ωitDit − Cit (62)

where a negative value implies that a bank has a surplus.

Let ω∗it be the value of deposit withdrawal that makes deficit Xit equal 0:

ω∗it =
Cit
Dit

=
cit
dit

Then if ωit ≤ ω∗it, there is a surplus Xit ≤ 0 and i is a lender, and if ωit > ω∗it, there is a

deficit Xit > 0 and i is a borrower. Recall

pBLit (G) = min

[
1,

Υ+
i (Gi)

Υ−i (G)

]

where K =
∑

j Gjk · 1{Gijt=1}.

Υ+
i =

∑
j

Gijt · F
(
ωj ≤ ω∗j

)
E
[
Xjt(ωj) | ωj ≤ ω∗j

]
=
∑
j

Gijt · F
(
ωj ≤ ω∗j

) ∫ ω∗j

−∞

(
ωD̃j − C̃j

)
f(ω)dω

=
∑
j

Gijt · F
(
ωj ≤ ω∗j

)
(1− θ)Ej

∫ ω∗j

−∞

(
ωd̃j − c̃j

)
f(ω)dω

= (1− θ)
∑
j

Gijt · F
(
ωj ≤ ω∗j

)
Ej

∫ ω∗j

−∞

(
ωd̃j − c̃j

)
f(ω)dω

The integral
∫ ω∗j
−∞

(
ωd̃j − c̃j

)
f(ω)dω is the same for all j, thus it can be taken out of the
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sum:

Υ+
i = (1− θ)F

(
ωj ≤ ω∗j

) ∫ ω∗

−∞

(
ωd̃− c̃

)
f(ω)dω ·

∑
j

Gijt · Ej

= (1− θ)F
(
ωj ≤ ω∗j

)
E [x(ω) | ω ≤ ω∗] ·

∑
j

Gijt · Ej

Equivalently,

Υ−i =
∑
k

1{Kk≥1} · F
(
ωj > ω∗j

)
E [Xkt(ωk) | ωk > ω∗k]

= (1− θ) E [x(ω) | ω > ω∗] · F
(
ωj > ω∗j

)∑
k

1{Kk≥1}Ek

pBLit (G) = min

[
1,

(1− θ)F (ω ≤ ω∗) E [x(ω) | ω ≤ ω∗] ·
∑

j Gijt · Ej
(1− θ)F (ω > ω∗) E [x(ω) | ω > ω∗] ·

∑
k 1{Kk≥1}Ek

]
= min

[
1,

F (ω ≤ ω∗) E [x(ω) | ω ≤ ω∗] ·
∑

j Gijt · Ej
F (ω > ω∗) E [x(ω) | ω > ω∗] ·

∑
k 1{Kk≥1} · Ek

]

pBLit (G) = min

[
1,

F (ω ≤ ω∗) E [x(ω) | ω ≤ ω∗]

F (ω > ω∗) E [x(ω) | ω > ω∗]
·

∑
j Gijt · Ej∑

k 1{Kk≥1} · Ek

]
(63)

where K =
∑

j Gjk · 1{Gijt=1}.

Similar procedure results in an expression for the probability of lending order matching

with a borrowing order. Recall that:

pLBit (G) = min

[
1,

Γ−i
Γ+
i

]

where Γ−i is the mass of reserve deficits for i’s neighbors and Γ+
i is the mass of lending orders
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available to i’s neighbors with borrowing orders.

pLBit (G) = min

[
1,

F (ω > ω∗) E [x(ω) | ω > ω∗]

F (ω ≤ ω∗) E [x(ω) | ω ≤ ω∗]
·

∑
j Gijt · Ej∑

k 1{Kk≥1} · Ek

]
(64)

I separate the components of the probabilities into common and idiosyncratic:

common: ψ =
F (ω > ω∗) E [x(ω) | ω > ω∗]

F (ω ≤ ω∗) E [x(ω) | ω ≤ ω∗]

idiosyncratic: Ψi (Gi) =

∑
j Gijt · Ej∑

k 1{Kk≥1} · Ek

Then,

pBLit (G) = min

[
1,

1

ψ
Ψi (Gi)

]
(65)

pLBit (G) = min [1, ψ Ψi (Gi)] (66)

C Generalized Bank’s Problem

This section closely follows the derivation of the bank’s problem in Bianchi and Bigio (2014).

Banks maximize their expected lifetime utility:

max
Dit,Bit,Cit,DIVi

E0

∑
t≥0

(βζ)t
DIV 1−γ

1− γ

s.t. Eit = Bit + Cit +DIVi −Dit (67)

E ′it = Rb
itBit −RdDit + rxitCit − ωit

(
rxit −Rd

)
Dit (68)

Dit ≤ κ (Bit + Cit −Dit) (69)

Bit, Cit, Dit ≥ 0

I denote the aggregate state by Z and solve the above problem by the method of dynamic

programming. Vector Z =
{
rDWt ; rERt ;F (ω) ;G

}
summarizes the aggregate state, which
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includes policy rates, distribution of withdrawal shocks, and the network matrix. Rewriting

the problem:

V (Eit, Z) = max
Dit,Bit,Cit,DIVi

DIV 1−γ

1− γ
+ βζE [V (E ′it, Z

′)] (70)

s.t. Eit = Bit + Cit +DIVi −Dit

E ′it = Rb
itBit −RdDit + rxitCit − ωit

(
rxit −Rd

)
Dit

Dit ≤ κ (Bit + Cit −Dit)

Bit, Cit, Dit ≥ 0

C.1 Homogeneity

I define a fraction of equity that a bank allocates towards dividends as divi ≡ DIVi/Eit.

The utility function can be written as:

U (DIVi) = E1−γ
it · U (divi)

I guess that the value function satisfies:

V (Eit, Z) = v (Z)E1−γ
it

where v (Z) is the slope of the value function. The value function (70) can be rewritten as:

V (Eit, Z) = E1−γ
it

[
max

Dit,Bit,Cit,divi

divi
1−γ

1− γ
+ βζEωE v (Z ′|Z)

[
E ′it
Eit

]1−γ
]

Consider the budget constraint (67). Dividing it by Eit results in:

1 = bit + cit + divi − dit (71)
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where deposits, loans, and reserves are expressed as fractions of equity:

[dit bit cit] ≡
[
Dit

Eit

Bit

Eit

Cit
Eit

]
(72)

The level of equity in the beginning of a period is non-negative, thus, dividing the capital

requirement by Eit results in:

dit ≤ κ (bit + cit − dit) (73)

Consider the evolution of equity (68). All the terms on the right-hand side are linear in

equity. Dividing the equation by Eit yields:

E ′it
Eit

= Rb
itbit −Rddit + rxitcit − ωit

(
rxit −Rd

)
dit (74)

where
E′it
Eit

is equity growth between two consecutive periods, which is equal to the sum of

the realized returns on loans and reserves net of the cost of deposits.

Problem 5 The scale-invariant problem of a bank is:

v (Z) = max
dit,bit,cit,divi

divi
1−γ

1− γ
+ βζEωE v (Z ′|Z)

[
E ′it
Eit

]1−γ

(75)

s.t. 1 = bit + cit + divi − dit
E ′it
Eit

= Rb
itbit −Rddit + rxitcit − ωit

(
rxit −Rd

)
dit

dit ≤ κ (bit + cit − dit)

bit, cit, dit ≥ 0

Policy rules that solve the original problem are equivalent to the policy rules that solve

Problem 5 multiplied by equity.
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C.2 Portfolio Separation

Rewrite the budget constraint (71) as follows:

1− divi = bit + cit − dit

The left-hand side constitutes the fraction of equity that is split between investment in assets

with different returns. These can be thought of as portfolio shares of three assets: loans,

reserves, and deposits. I define these shares as:

b̂i =
bit

1− divi
, ĉi =

cit
1− divi

, d̂i =
dit

1− divi
(76)

Using the definitions above, the budget constraint and the capital requirement can be rewrit-

ten as:

1 = b̂i + ĉi − d̂i (77)

d̂i ≤
κ

1 + κ

(
b̂i + ĉi

)
(78)

respectively. Expressing the evolution of equity in terms of portfolio shares results in:

E ′it
Eit

= (1− divi)
[
Rb
itb̂i −Rdd̂i + rxitĉi − ωit

(
rxit −Rd

)
d̂i

]

Substituting the budget constraint (77) into the above:

E ′it
Eit

= (1− divi)
[
Rb
it +

(
rxit −Rb

it

)
ĉi +Rb

itd̂i − ωit
(
rxit −Rd

)
d̂i

]
(79)

Substituting the budget constraint (77) into the capital requirement (78) yields:

d̂i ≤ κ (80)
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Since divi is known at t+ 1, the value function (75) can be rewritten as:

v (Z) = max
d̂i,ĉi,divi

divi
1−γ

1− γ
+ βζ (1− divi)1−γ E v (Z ′|Z) Eω

[
RE
i

]1−γ
where RE

i is the realized return on bank’s portfolio defined as:

RE
i ≡ Rb

itb̂i −Rdd̂i + rxitĉi − ωit
(
rxit −Rd

)
d̂i (81)

Moreover, ĉi and d̂i enter only in the continuation value, thus, their optimal values can be

found independently from optimal dividend. Solving problem 5 is equivalent to solving the

following problem:

Problem 6 The value function v (·) solves:

v (Z) = max
divi

divi
1−γ

1− γ
+ βζ (1− divi)1−γ E v (Z ′|Z) max

d̂i,ĉi

Eω
[
RE
i

]1−γ
s.t. RE

i = Rb
itb̂i −Rdd̂i + rxitĉi − ωit

(
rxit −Rd

)
d̂i

d̂i ≤ κ

0 ≤ ĉi, d̂i

Next I consider the portfolio maximization problem.

C.3 Portfolio Maximization Problem

max
d̂i,ĉi

Eω
[
Rb
itb̂i −Rdd̂i + rxitĉi − ωit

(
rxit −Rd

)
d̂i

]1−γ
(82)

s.t. d̂i ≤ κ

0 ≤ ĉi, d̂i

A non-standard feature of this problem is that rxit has a discontinuity at the point where

57



bank’s reserve deficit is zero. This occurs when ωit = ĉi
d̂i

. Since ωit ≤ 1, then it must be that

ĉi
d̂i
≤ 1, which rules out d̂i = 0 in equilibrium. If the realized shock is below ĉi

d̂i
, then the

bank has excess reserves, which can be sold at χLit. If the realized shock is above ĉi
d̂i

, then

the bank has a reserve deficit and has to buy reserves at χBit . The portfolio problem can be

rewritten as follows:

max
d̂i,ĉi

∫ cit
dit

−∞

[
RE
i

(
χLit
)]1−γ

f (ω) dω +

∫ 1

cit
dit

[
RE
i

(
χBit
)]1−γ

f (ω) dω

s.t. d̂i ≤ κ

0 ≤ ĉi

where RE
i (rxit) = Rb

it +
(
rxit −Rb

it

)
ĉi −

(
Rd −Rb

it + rxit · ωit
)
d̂i

Rewriting the problem:

max
d̂i,ĉi

∫ cit
dit

−∞

[
Rb
it +

(
χLit −Rb

it

)
ĉi −

(
Rd −Rb

it + ωitχ
L
it

)
d̂i

]1−γ
f (ω) dω

+

∫ 1

cit
dit

[
Rb
it +

(
χBit −Rb

it

)
ĉi −

(
Rd −Rb

it + ωitχ
B
it

)
d̂i

]1−γ
f (ω) dω

+ µi

(
κ− d̂i

)
+ λ1

itĉi + λ2
itd̂i

Differentiating w.r.t. ĉi:

0 = (1−γ)
(
χLit−Rb

it

) ∫ cit
dit

−∞

[
Rb
it +

(
χLit −Rb

it

)
ĉi −

(
Rd −Rb

it + ωitχ
L
it

)
d̂i

]−γ
f (ω) dω

+
1

d̂i

[
Rb
it +

(
@
@χ
L
it −Rb

it

)
ĉi −

(
Rd −Rb

it +
@
@

@@

cit
dit
χLit

)
d̂i

]1−γ

+ (1− γ)
(
χBit −Rb

it

) ∫ 1

cit
dit

[
Rb
it +

(
χBit −Rb

it

)
ĉi −

(
Rd −Rb

it + ωitχ
B
it

)
d̂i

]−γ
f (ω) dω

− 1

d̂i

[
Rb
it +

(
@
@χ
B
it −Rb

it

)
ĉi −

(
Rd −Rb

it + Z
Z

ZZ

cit
dit
χBit

)
d̂i

]1−γ

+ λ1
it
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Simplyfying and dividing by 1− γ:

− λ1
it

1− γ
=
(
χLit−Rb

it

) ∫ cit
dit

−∞

[
Rb
it +

(
χLit −Rb

it

)
ĉi −

(
Rd−Rb

it + ωitχ
L
it

)
d̂i

]−γ
f (ω) dω

+
(
χBit −Rb

it

) ∫ 1

cit
dit

[
Rb
it +

(
χBit −Rb

it

)
ĉi −

(
Rd −Rb

it + ωitχ
B
it

)
d̂i

]−γ
f (ω) dω

Isolate Rb
it:

− λ1
it

1− γ
=

∫ cit
dit

−∞
χLit

[
Rb
it +

(
χLit −Rb

it

)
ĉi −

(
Rd −Rb

it + ωitχ
L
it

)
d̂i

]−γ
f (ω) dω

−Rb
it

∫ cit
dit

−∞

[
Rb
it +

(
χLit −Rb

it

)
ĉi −

(
Rd −Rb

it + ωitχ
L
it

)
d̂i

]−γ
f (ω) dω

+

∫ 1

cit
dit

χBit

[
Rb
it +

(
χBit −Rb

it

)
ĉi −

(
Rd −Rb

it + ωitχ
B
it

)
d̂i

]−γ
f (ω) dω

−Rb
it

∫ 1

cit
dit

[
Rb
it +

(
χBit −Rb

it

)
ĉi −

(
Rd −Rb

it + ωitχ
B
it

)
d̂i

]−γ
f (ω) dω

Using the definition RE
i ≡ Rb

it +
(
χLit −Rb

it

)
ĉi −

(
Rd −Rb

it + ωitχ
L
it

)
d̂i, the above equation

can be rewritten as follows:

Eω
[
rxit
[
RE
i

]−γ]−Rb
itEω

[
RE
i

]−γ
+

λ1
it

1− γ
= 0

Applying formula for expectation of a product of two dependent variables:

Eωr
x
it · Eω

[
RE
i

]−γ
+ COV

{
rxit,
[
RE
i

]−γ}−Rb
it Eω

[
RE
i

]−γ
+

λ1
it

1− γ
= 0

Dividing by Eω
[
RE
i

]−γ
:

Rb
it = Eωr

x
it +

COV
{
rxit,
[
RE
i

]−γ}
Eω [RE

i ]
−γ +

λ1
it

(1− γ)Eω [RE
i ]
−γ
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where

Eωr
x
it = χLit

∫ cit
dit

−∞
f (ω) dω + χBit

∫ 1

cit
dit

f (ω) dω

= χLit · F
[
cit
dit

]
+ χBit

(
1− F

[
cit
dit

])
=
(
χLit − χBit

)
F

[
cit
dit

]
+ χBit

Differentiating the objective w.r.t. d̂i:

−
(
Rd−Rb

it + ωitχ
L
it

) ∫ cit
dit

−∞

[
Rb
it +

(
χLit −Rb

it

)
ĉi −

(
Rd −Rb

it + ωitχ
L
it

)
d̂i

]−γ
f (ω) dω

−
(
Rd−Rb

it + ωitχ
B
it

) ∫ 1

cit
dit

[
Rb
it +

(
χBit −Rb

it

)
ĉi −

(
Rd −Rb

it + ωitχ
B
it

)
d̂i

]−γ
f (ω) dω

− µi
1− γ

+
λ2
it

1− γ
= 0

Rewriting in terms of RE
i :

−
(
Rd −Rb

it

)
Eω
[
RE
i

]−γ − Eω
[
ωitr

x
it

[
RE
i

]−γ]
+
λ2
it − µi
1− γ

= 0

Applying formula for expectation of a product of two dependent variables:

−
(
Rd−Rb

it

)
Eω
[
RE
i

]−γ − Eω [ωitr
x
it] Eω

[
RE
i

]−γ − COV
{
ωitr

x
it,
[
RE
i

]−γ}
+
λ2
it−µi
1−γ

= 0

Dividing by Eω
[
RE
i

]−γ
:

Rd −Rb
it = −Eω [ωitr

x
it]−

COV
{
ωitr

x
it,
[
RE
i

]−γ}
Eω [RE

i ]
−γ +

λ2
it − µi

(1− γ)Eω [RE
i ]
−γ
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where

Eω[ωitr
x
it] = χLit

∫ cit
dit

−∞
ωf (ω) dω + χBit

∫ 1

cit
dit

ωf (ω) dω

The first order conditions for an interior solution imply:

Rb
it =

Eω
[
rxit ·

[
RE
i

]−γ]
Eω [RE

i ]
−γ (83)

Rb
it −Rd =

Eω
[
rxit · ωit ·

[
RE
i

]−γ]
+ µi

1−γ

Eω [RE
i ]
−γ (84)

where µi is the multiplier on the capital requirement constraint.

Rb
it = Eωr

x
it︸ ︷︷ ︸

direct effect

+
COV

{
rxit,
[
RE
i

]−γ}
Eω [RE

i ]
−γ︸ ︷︷ ︸

liquidity risk premium effect

Rb
it −Rd ≥ Eω [rxit · ωit]︸ ︷︷ ︸

direct effect

+
COV

{
rxit · ωit,

[
RE
i

]−γ}
Eω [RE

i ]
−γ︸ ︷︷ ︸

liquidity risk premium effect

where the latter holds with equality if the capital requirement is non-binding. The covariance

terms are liquidity risk premia. For a risk-neutral bank (γ = 0) these terms disappear.

Once the optimal values for ĉi and d̂i are found, the expected value of
[
RE
i

]1−γ
equals:

Ω∗it ≡ Eω
[
RE
i

]1−γ
= F

[
ĉ∗i

d̂∗i

] [
RE
i

(
χLit
)]1−γ

+

(
1− F

[
ĉ∗i

d̂∗i

]) [
RE
i

(
χBit
)]1−γ
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C.4 Dividends and Bank Value

The value function is linear in Ω∗it:

v (Z) = max
divi

divi
1−γ

1− γ
+ βζ (1− divi)1−γ Ev (Z ′|Z) Ω∗it

Differentiating w.r.t. divi:

divi
−γ = βζ(1− γ)Ω∗it (1− divi)−γ E v (Z ′|Z)

1

divi
= 1 + [βζ(1− γ)Ev (Z ′|Z) Ω∗it]

1
γ

divi =
1

1 + [βζ(1− γ)Ev (Z ′|Z) Ω∗it]
1
γ

Substituting back to the value function results in the following functional equation:

v (Z) =
1

1− γ

[
1 + [βζ (1− γ) Ev (Z ′|Z) Ω∗it]

1
γ

]γ
(85)

The right-hand side can be treated as a contraction mapping operator. Once the value

function is solved, next period equity can be calculated:

E ′it = (1− divi)EitRE
i

This concludes the bank problem.

D Real Sector

D.1 Household

Household obtains utility from consumption, Ct, and disutility from labor, Ht. The house-

hold can save by providing deposits to the banking sector, DA
t . Deposits receive a constant
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interest rate of Rd, which is paid at the beginning of the next period.

Problem 7 The household solves the following maximization problem:

max
Ct,Ht,DAt

∞∑
t=0

βt
[
Ct −

H1+ν
t

1 + ν

]
s.t. DA

t + Ct = WtHt +RdDA
t−1 + Πt + Tt

where Wt is the real wage rate, Πt is the firm’s profit, Tt is the tax transfer, and ν is the

inverse of the Frisch elasticity. The labor supply curve is:

Ht = W
1
ν
t (86)

which implies that the household’s total wage income is W
ν+1
ν

t . If Rd = 1
β
, the household is

indifferent between consumption and saving, and:

Ct ∈ [0, Yt] , DA
t = Yt − Ct, Rd =

1

β
(87)

where Yt is firm’s output.

D.2 Firm

An aggregate profit-maximizing firm uses household’s labor to produce output according to

the following production function:

Yt = AtH
1−α
t (88)

where At is a technology index, and 1 − α is the labor share. The firm has to pay workers

before output is realized, therefore it borrows the total amount IAt from the banking sector

to cover the wage bill:

WtHt = IAt (89)
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IAt is collected via the CES technology:

IAt =

[∑
i

λ
1
ε
i I

ε−1
ε

it

] ε
ε−1

(90)

where Iit is borrowing from bank i, λi is the bank i’s share, and ε is the elasticity of substitu-

tion between loans from different banks. The firm promises to repay the loan principal and

accrued interest in the beginning of the next period. The total repayment to the banking

sector is then
∑

iR
b
itIit. The firm never defaults on loans.

Problem 8 The aggregate firm solves the following maximization problem:

max
IAt ,Iit,Ht

∞∑
t=0

βt

[
AH1−α

t −WtHt + IAt −
∑
i

Rb
itit−1Iit−1

]

s.t. WtHt = IAt

IAt =

[∑
i

λ
1
ε
i I

ε−1
ε

it

] ε
ε−1

Substituting the constraints into the objective, the firm’s problem can be written as an

unconstrained maximization problem:

max
Iit

∞∑
t=0

βt

 At

W 1−α
t

[∑
i

λ
1
ε
i I

ε−1
ε

it

] ε(1−α)
ε−1

−
∑
i

Rb
itit−1Iit−1
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The first-order condition implies the demand curve for a loan from a bank i:

Rb
it =

(1− α)At

βW 1−α
t

[∑
i

λ
1
ε
i I

ε−1
ε

it

] ε(1−α)
ε−1

−1

λ
1
ε
i I
− 1
ε

it

=
(1− α)At

βW 1−α
t

[∑
i

λ
1
ε
i I

ε−1
ε

it

] ε(1−α)−ε+1
ε−1

λ
1
ε
i I
− 1
ε

it

=
(1− α)At

βW 1−α
t

[∑
i

λ
1
ε
i I

ε−1
ε

it

] 1−αε
ε−1

λ
1
ε
i I
− 1
ε

it

=
(1− α)At

βW 1−α
t

[∑
i

λ
1
ε
i I

ε−1
ε

it

] ε
ε−1

1−εα
ε

λ
1
ε
i I
− 1
ε

it

Equivalently,

Rb
it =

(1− α)At

βW 1−α
t

(IAt )
1
ε
−αλ

1
ε
i I
− 1
ε

it (91)

D.3 Labor Market Clearing

Substituting the labor supply condition (86) into the working-capital constraint (89) gives

the relationship between wages and total investment:

W
1+ν
ν

t = IAt

Substituting the above in the loan demand (91):

Rb
it =

(1− α)At

βW 1−α
t

(IAt )
1
ε
−αλ

1
ε
i I
− 1
ε

it

=
(1− α)At
βHν(1−α)

(IAt )
1
ε
−αλ

1
ε
i I
− 1
ε

it

=
(1− α)At

β(IAt )
ν(1−α)
ν+1

(IAt )
1
ε
−αλ

1
ε
i I
− 1
ε

it

=
(1− α)

β
At
[
IAt
] 1
ε
−α− ν(1−α)

ν+1 λ
1
ε
i I
− 1
ε

it

=
(1− α)At

β

[
IAt
] 1
ε
− ν+α
ν+1

[
Iit
λi

]− 1
ε
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Simplifying:

Rb
it =

(1− α)At
β

[
IAt
] 1
ε
− ν+α
ν+1

[
Iit
λi

]− 1
ε

(92)

Rb
it =

(1− α)At
β

[
IAt
] 1
ε
− ν+α
ν+1 λ

1
ε
i I
− 1
ε

it

Rb
itIit =

(1− α)At
β

[
IAt
] 1
ε
− ν+α
ν+1 λ

1
ε
i I
− 1
ε

it Iit

Rb
itIit =

(1− α)At
β

[
IAt
] 1
ε
− ν+α
ν+1 λ

1
ε
i I

ε−1
ε

it

Summing over i:

∑
i

Rb
itIit =

(1− α)At
β

[
IAt
] 1
ε
− ν+α
ν+1
∑
i

λ
1
ε
i I

ε−1
ε

it

=
(1− α)At

β

[
IAt
] 1
ε
− ν+α
ν+1

[∑
i

λ
1
ε
i I

ε−1
ε

it

] ε
ε−1

 ε−1
ε

=
(1− α)At

β

[
IAt
] 1
ε
− ν+α
ν+1
[
IAt
] ε−1

ε

=
(1− α)At

β

[
IAt
] 1
ε
+ ε−1

ε
− ν+α
ν+1

=
(1− α)At

β

[
IAt
]1− ν+α

ν+1

=
(1− α)At

β

[
IAt
] ν+1−ν−α

ν+1

=
(1− α)At

β

[
IAt
] 1−α
ν+1

=
1− α
β

Yt
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The firm’s profit is then:

Πt =
At

W 1−α
t

[∑
i

λ
1
ε
i I

ε−1
ε

it

] ε(1−α)
ε−1

−
∑
i

Rb
itit−1Iit−1

Πt =
At

W 1−α
t

[
IAt
]1−α − (1− α)At−1

β

[
IAt−1

] 1−α
ν+1

Πt = AtH
1−α
t − (1− α)At−1

β

[
IAt−1

] 1−α
ν+1

Πt = At[I
A
t ]

1−α
1+ν − (1− α)At−1

β

[
IAt−1

] 1−α
ν+1

Πt = Yt −
1− α
β

Yt−1
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E Equilibrium Conditions

(1− θ)Eit = B̃it + C̃it − D̃it

D̃it ≤ κ (1− θ)Eit

Eit+1 = Rb
itB̃it −RdD̃it +Rx

itL̃it − ωit
(
Rx
it −Rd

)
D̃it

Xit = ωitD̃it − L̃it

Rx
it =

 χLit = pLitr
FF
t +

(
1− pLit

)
rERt if Xit ≤ 0

χBit = pBitr
FF
t +

(
1− pBit

)
rDWt if Xit > 0

Rb
it = χLit F [Lit] + χBit (1− F [Lit])

Rb
it −Rd = χLit

∫ Lit

−∞
ωitf (ωit) dωit + χBit

∫ 1

Lit

ωitf (ωit) dωit + µit

DA
t + Ct = WtHt +RdDA

t−1 + Πt + Tt

Ht = W
1
ν
t

DA
t = Yt − Ct and Rd =

1

β

Yt = AtH
1−α
t

IAt = Bit =

[∑
i

λ
1
ε I

ε−1
ε

it

] ε
ε−1

WtHt = IAt

Rb
it =

(1− α)At

βW 1−α
t

(IAt )
1
ε
−αλ

1
ε
i I
− 1
ε

it

Πt = AtH
1−α
t −

∑
i

Rb
itt−1Iit−1

M0
t+1 −M0

t = D
CB

t+1 −D
CB

t − rDWt X
−

t + rERt X
+

t + Tt

X
−

t =
∑
i

1{Xit>0} ·
(
1− pBit

)
Xit, X

+

t =
∑
i

(
1− 1{Xit>0}

)
·
(
1− pLit

)
Xit

DA
t =

∑
i

D̃it

∑
i

C̃it = D
CB

t = M0
t
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