Estimating the Information Component in Switching Costs: A Structural Approach

Santiago Truffa Tulane

Sheisha Kulkarni Berkeley

Gonzalo Iberti SBIF

November 2018

Motivation

- Information frictions affect the ability of consumers to switch between institutions
 - Ioan characteristics are often hidden and displayed in a non-standard manner
 - consumers are not always efficient when choosing among contracts (Handel 2013)
 - this is especially true for financial products (Hortacsu 2004, Palmer 2016)
- > Yet information frictions are only one component of switching costs
 - empirical and theoretical barriers make it difficult to disentangle the informational component of switching costs
- How important are information frictions for consumer welfare?

Why is this a challenging question?

- Data
 - most studies have used aggregate bank-level market shares to estimate switching costs (Kim, Klieger and Vale 2003)
 - $\star\,$ net flows might not fully capture consumers' switches
 - for a subset of institutions
- Experimental setting
 - ideally we would need a policy change that exogenously varies informational frictions without changing other components of switching costs
- Model
 - dynamic model of consumer choice
 - that can incorporate banks strategic behaviour
 - can exploit exogenous variation to recover the informational parameter of structural model

This paper

- Data
 - we have administrative loan-level data from the Chilean banking regulator which reports universe of matches between consumers and banks
- ► We exploit a policy change in Chile that explicitly attempted to reduce the information friction as consumers no longer had to:
 - a) analyze fine print to find relevant fees
 - b) calculate an APR
- ► We develop a framework that combines the advantages of reduced form estimation and structural modeling:
 - we use reduced-form regressions to recover the fundamental parameters of our structural model
 - allows us to exploit policy change to disentangle information friction component
 - which we then incorporate into a dynamic structural model to asses changes in welfare and long-term market equilibrium

Main findings

We find that the introduction of a standardized loan contract reduced information frictions by 10 percent

According to our dynamic structural model, this leads to:

- a reduction in average interest rates of 180 basis points (as consumers switch to banks that provide lower interest rates)
- a reduction in the standard deviation of rates
- ▶ an increase in welfare of around 15 percent in the long-run.

Transparency shock: Law 20.555

▶ In March 2012 the Chilean congress passes law 20.555

- aimed to protect consumers in credit markets by regulating and standardizing how relevant information should be presented to consumers
- specifically introduces an APR (called CAE) for both credit contracts and credit quotes
- to be displayed on a standardized summary page
- The law also strengthened the National Consumer Protection Agency (SERNAC)
 - giving more resources and powers to enable the agency to monitor and enforce compliance with the law

General set-up

Dynamic model

Consumers:

- each period are required to borrow one unit of money
- search across different banks for the best "offer"
- frictions explain why not all consumers get the lowest price available in the market
- Banks:
 - each period maximize profits
 - face an (endogenous) downward sloping demand curve
 - they charge an interest rate which is a markup over their cost of funding

We estimate each part of the model separately

- we use gross switches between consumers and banks to identify the consumer information friction.
 - While net flows have traditionally been used to derive changes in market power, they are not ideal to identify changes in consumer behavior.
- ▶ We use market share data (net flow) to identify our market power parameter (Berry 1994)
 - This specification of the model allows us to have a different market power for each lender and for each market.
- Finally, in this stage we:
 - use different sources of variation to independently identify each parameter.
 - use gross switching flows of clients between institution. It allow us recover the sensitivity of consumer to relative price and how this changes the partial equilibrium

Estimation

Estimating equation for consumers:

$$log(m_t^{ij}) - log(m_t^{ii}) - eta(log(m_{t+1}^{ij}) - log(m_{t+1}^{ii})) = rac{-(1-eta)}{
u} C^{ij} + (eta/
u)(
hor_{t+1}^j -
hor_{t+1}^i) + v_{t+1}$$

Estimating equation for banks:

$$log(\hat{s}_j) = C + \beta X_j - \rho r_j + \epsilon_j$$

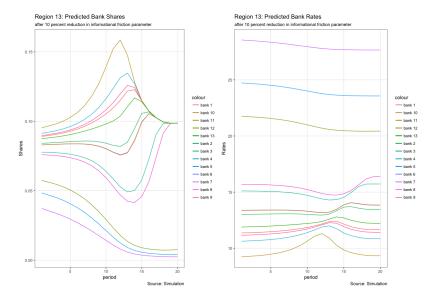
Cost shifters:

- daily interbank interest rate
- current and expected inflation
- banks' monthly ratio between financial interest expenses and equity

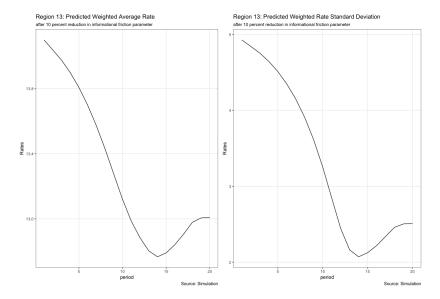
Estimation

- Estimating equation for consumers:
 - For β =0,9, volatility of 3,13 and informational friction parameter = 10,93
 - using point estimates in swtching cost of around 10 percent. We see a drop between 8 and 15 percent (in a Cl).
- Estimating equation for banks:
 - ▶ For *rho*=0,04, transalte into a mean price elasticity of 0,77

Information friction parameter I


- We would like to decompose what fraction of a switching cost are driven by information frictions
- To do so we will evaluate how the switching cost C changes before and after the policy shock
- Our identifying assumption here is that for a narrow time window around the policy change, any change in this parameter can be solely attributed to the change in transparency in the market induced by the government policy.
- ▶ We consider switches within a seven month window before and after the policy change to estimate *C*.

Steady state and dynamic effect of policy shock I


- We compute the steady state:
 - equilibrium provides a system of non-linear equations that we solve numerically
- ► We evaluate what would be the dynamic consequences from a 10 percent fall in information frictions:
 - we then "shock" the steady state by decreasing the switching cost parameter in 10 percent
 - as we have a law of motion for consumers, and a closed-form solution for interest rates we can recursively compute the equilibrium of this economy
- Welfare effects: Employing the Envelope Theorem repeatedly, the effect of a change in switching costs for a worker in bank *i* can be written as:

$$\frac{\partial V^{i}}{\partial C} = \sum_{t=0}^{\infty} \sum_{j=1}^{J} \beta^{t} m_{t}^{ij} \rho \frac{\partial r^{i}}{\partial C} \sim \sum_{t=0}^{\infty} \sum_{j=1}^{J} \beta^{t} m_{t}^{ij} \rho \frac{\Delta r_{t}^{i}}{\Delta C}$$

Steady state and dynamic effect of policy shock II

Steady state and dynamic effect of policy shock III

Steady state and dynamic effect of policy shock IV

- ▶ Banks with a higher cost of funding see their market shares decrease
- Banks strategically react to consumer switching in two ways:
 - banks that are losing market power, reduce their interest rates to be more competitive
 - banks where consumers are switching to, increase interest rates as they gain market power
- In the long run, a ten percent drop in information frictions implies a long-term rate reduction of around 180 basis points
- Consumer welfare improves 15 percent
 - Benefits accrue mainly to consumers that decided to switch banks (distributive effects?)
 - Welfare gains are higher in regions with more competitive banking
 - Market power can reduce the economic gains from consumers switching

Conclusion

- We exploit a policy change in Chile that reduced the informational friction component of switching costs for consumers
- Using administrative loan-level data in combination with a dynamic structural model, we find that:
 - this policy reduces average interest rates by 180 basis points in the long run
 - we observe a reduction in standard deviation of rates
 - these rate decreases are attenuated for non-switchers and for consumers in regions that have less competitive banking sectors
- Overall, consumers enjoyed an increase in welfare of 15 percent

Estimating the Information Component in Switching Costs: A Structural Approach

Santiago Truffa Tulane

Sheisha Kulkarni Berkeley

Gonzalo Iberti SBIF

November 2018