The Effects of Information on Credit Market Competition: Evidence from Credit Cards

Fritz Foley (Harvard) Agustin Hurtado (Booth) Andres Liberman (NYU) Alberto Sepulveda (SBIF)

November 2018

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Lender competition and public information

- Without public information: less competition
 - Lenders acquire private information about their own borrowers
 - In the presence of asymmetric information, they hold an informational rent over their good borrowers
 - May allow lending to riskier populations ex ante
- With public information: more competition
 - Better outcomes for good borrowers who look safer (ex ante)
 - No informational rents ex post: riskier populations may be excluded
- Unclear welfare effects of public information:
 - Cross country evidence suggests more competition improves outcomes in countries with weaker institutions (e.g., Beck, Demirguc-Kunt, and Maksimovic 2004)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

This paper

- We study the effects of sharing credit information on lender competition
- Setting: credit cards in Chile issued by banks ("full information") and retailers ("partial info", some market power over good types)
- Data: credit registry containing <u>universe</u> of credit card borrowers at the <u>individual-lender-month</u> level, for banks and retailers

Three parts:

- Empirical test 1: cross section of contracts for new borrowers across retailer and banks
- Empirical test 2: exploit natural experiment: in 2015 a retailer sold its credit card business to a bank; <u>changes information</u>, and thus, competitive environment
- Framework: credit limits are main margin of adjustment in credit cards; adverse selection induces market power under no credit information

Results

- 1. Retailers lend lower amounts that grow faster (conditional on remaining with lender) to riskier borrowers
- 2. Natural experiment:
 - Incumbent borrowers: receive larger credit lines from <u>other</u> banks

- New borrowers: safer, larger limits
- 3. Rationalized with model
 - 3.1 Missing: total welfare effects

Summary of framework

Empirical setting and data

New retail and bank borrowers

Natural experiment

Conclusion

Summary of framework

(ロ)、(型)、(E)、(E)、 E) のQ(C)

Framework

- In paper we develop a simple model of a market for credit cards in the presence of adverse selection
- Rates given conditional on observables
- Lenders compete on credit lines
 - Lots of evidence that limits are primary margin of adjustment in consumer credit (see e.g. Agarwal et al 2017)

- We show some in the paper as well
- Framework rationalizes positive effects of competition for incumbent borrowers, possible negative effects for new borrowers from riskier populations

Takeaways

With credit bureau:

- Observably safer populations get credit
- Safer conditional on observables
- Initial limits are larger, grow less over time
- Without credit bureau:
 - Riskier populations also get credit
 - Lower initial limits, grow more conditional on remaining as a client

Empirical setting and data

Credit cards in Chile

Two types of lenders, banks and retailers

Similar product: revolving, credit line, both subject to price cap

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Credit cards in Chile

- Two types of lenders, banks and retailers
 - Similar product: revolving, credit line, both subject to price cap
- Banks: 17 banks, 3.8 million active credit cards with approx \$6.5bn balance
 - Regulated in terms of information disclosure: individual x bank x month level information on balances and repayment collected and made available to banks
 - Repayment info also available to all formal lenders via credit bureaus

Credit cards in Chile

- Two types of lenders, banks and retailers
 - Similar product: revolving, credit line, both subject to price cap
- Banks: 17 banks, 3.8 million active credit cards with approx \$6.5bn balance
 - Regulated in terms of information disclosure: individual x bank x month level information on balances and repayment collected and made available to banks
 - Repayment info also available to all formal lenders via credit bureaus
- Retailers: 6 in our data, 14.7 million active credit cards, \$5bn balance
 - Disclose information on past defaults to private credit bureaus; observable by all other lenders

Information setting

Lenders operate in different information environments

- Banks operate under a full credt registry setting, full competition ex post
- Retailers hold information rent over "good" borrowers, who repay their debt ex-post

We exploit this heterogeneity, but...

Information setting

Lenders operate in different information environments

- Banks operate under a full credt registry setting, full competition ex post
- Retailers hold information rent over "good" borrowers, who repay their debt ex-post
- We exploit this heterogeneity, but...
- ... other differences between banks and retailers? Sure: e.g., funding (deposits versus commercial paper), management style, regulation

Keep in mind

- Regulatory dataset collected by SBIF (Chilean banking regulator)
- Micro-level data on universe of credit card borrowers in Chile (8 million individuals)
- Individual by month by bank data on credit card limit, usage, delinquency
- Our primary analysis is conducted using a 10% random sample

Summary stats individual level

	(1) All	(2) Bank	(3) Retail
Panel A: Credit Card Characteristics			
Credit Card Limit	1,437,031	2,371,160	699,395
Credit Card Usage	373,283	523,107	254,975
Credit Card Balance/Limit	0.3310	0.2548	0.3912
Number Lenders	2.0777	2.0231	2.1208
Number Lenders with Balance	1.3182	1.1160	1.4778
Credit Card Default	0.0218	0.0103	0.0309
Panel B: Borrower Characteristics			
Monthly income bin	1.64	1.85	1.47
Fraction in income bin 1	0.60	0.52	0.67
Female	0.5304	0.4907	0.5617
Married	0.6582	0.6486	0.6658
Age	47.35	46.49	48.02
Individuals	657,856	434,276	521,904

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = の�?

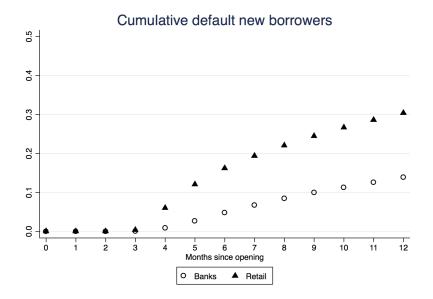
New retail and bank borrowers

Empirical analysis 1

- Study new credit card borrowers across both types of lenders
- New borrowers are individuals who appear for the first time in the panel after the first three months

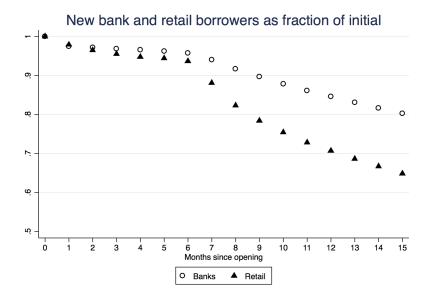
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Empirical analysis 1


- Study new credit card borrowers across both types of lenders
- New borrowers are individuals who appear for the first time in the panel after the first three months
- From the framework, we test the following empirical predictions:
 - Retailers lend to riskier individuals
 - Retailers lend lower initial limits
 - Retailers increase credit limits more over time to borrowers who do not default

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Empirical analysis 1


- Study new credit card borrowers across both types of lenders
- New borrowers are individuals who appear for the first time in the panel after the first three months
- From the framework, we test the following empirical predictions:
 - Retailers lend to riskier individuals
 - Retailers lend lower initial limits
 - Retailers increase credit limits more over time to borrowers who do not default
 - Later: retail borrowers who become bank borrowers will receive a higher limit from other banks

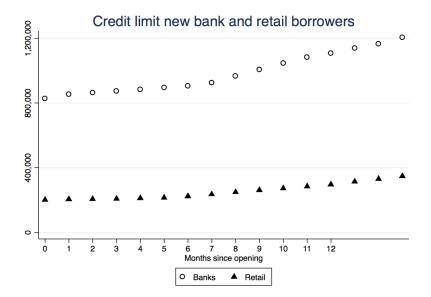
Retail borrowers default more ...

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

...and are more likely to have their account closed

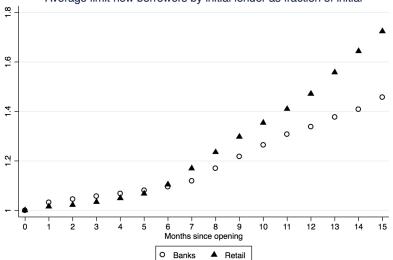
▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Retailers lend to poorer, older individuals...


	(1)	(2)	(3)	(4)
	All	Bank	Retail	Retail minus Bank
Monthly income bin	1.0792	1.1160	1.0576	-0.0584***
Fraction in income bin 1	0.8765	0.8602	0.8865	0.0263***
Female	0.5061	0.5267	0.4973	-0.0294***
Married	0.3860	0.3052	0.4268	0.1217***
Age	38.11	34.46	39.95	5.4872***
Individuals	252,992	86,808	160,521	

...and have a relatively higher default rate

 Regress cumulative default for first lender in first 12 months on a dummy for new retail borrower


	(1)	(2)	(3)	
	Default	Default	Default	
	in 1 year	in 1 year	in 1 year	
New Retail Borrower	0.1003***	0.0864***	0.0847***	
	(0.0016)	(0.0040)	(0.0080)	
Fixed Effects:				
Month		Y		
5-year age bin	Y			
Female	Y			
Married	Y			
Income bin	Υ			
County	Y			
Age bin x Female x Month				
x Income bin x County			Y	
Dep. variable Mean	0.20	0.20	0.20	
Observations	247,329	247,329	247,329	
R-squared	0.01	0.07	0.39	

Credit limit is is initially lower for new retail borrowers

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Credit limit increases proportionally more for retail borrowers

Average limit new borrowers by initial lender as fraction of initial

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ● ● ● ●

Summarizing: regression

 Regress probability of having a card, default, and log limit on event month dummies interacted with first time retail (omitted are first time bank)

	(1)	(2)	(3)
	Has Limit	Default	log(Limit)
Retail x t_1	-0.0104***	0.0000	-0.0778***
	(0.0007)	(0.0000)	(0.0053)
Retail x t ₂	-0.0214^{***}	0.0000	-0.0695^{***}
	(0.0008)	(0.0000)	(0.0055)
Retail x t_{14}	-0.0846***	0.1692***	0.1081***
	(0.0022)	(0.0028)	(0.0082)
Retail x <i>t</i> 15	-0.0873***	0.1724***	0.1177***
	(0.0023)	(0.0029)	(0.0085)
Observations	1,365,771	1,489,648	1,284,258
R-squared	0.0390	0.1179	0.1805
Clusters	93,111	93,103	93,111

Natural experiment

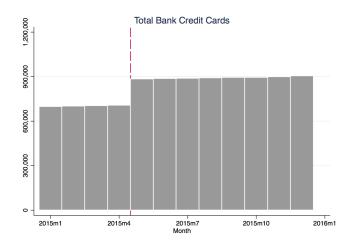
(ロ)、(型)、(E)、(E)、 E) のQ()

Identification concern

Banks and retailers differ in their information setting...

・ロト・4日ト・4日ト・4日・9000

Identification concern


Banks and retailers differ in their information setting...

- ...and in their source of funding, distribution network, management, etc...
- Although we want to argue some of these difference are endogenous to information setting, compromises identification of the effect of information
- Ideal test: randomly assign information structure across lenders

Something like this happened in 2015

Sale of credit card portfolio

In May 2015, one of the largest retail lenders (the "Lender") sold its credit card portfolio to a bank

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - の々で

Information effects

- As a result of the transaction, the Lender's borrowers were transitioned from the retail information regime to the bank information regime
 - > Other retailers: no significant change in information structure

 Other banks: can distinguish non-defaulters among the Lender's borrowers

Information effects

- As a result of the transaction, the Lender's borrowers were transitioned from the retail information regime to the bank information regime
 - Other retailers: no significant change in information structure
 - Other banks: can distinguish non-defaulters among the Lender's borrowers
- We expect to see:
 - 1. Increase in bank limits to the Lender's (non-defaulting) borrowers relative to other retail borrowers
 - 1.1 Also, increase in limits from Lender to its borrowers
 - 2. Lender shift originations to safer populations, higher initial credit limit

First test: existing borrowers

We first condition the sample on all individuals who have a positive limit with any retailer as of August 2014

- Define dummy Lender, equals one for individuals who have a positive credit line from the Lender and zero for other retail borrowers
- We implement a diff-in-diffs: Lender=1 versus Lender=0, after versus before transaction
 - We can also control for retail lender outcomes (does not change much)

 Collapse in three-month periods, 2 pre-periods prior to May 2015, 3 post-periods

Summary stats pre-transaction I

	(1)	(2)
	Lender borrowers	Non-Lender borrowers
Panel A: Outside Credit Card Characteristi	cs	
Credit Card Limit	4,678,069	2,401,954
Bank Credit Card Limit	3,564,118	1,656,261
Retail Credit Card Limit	1,113,951	745,693
Has Credit Card	0.9013	1.0000
Has Bank Credit Card	0.7450	0.4791
Has Retail Credit Card	0.7665	1.0000
Number of Lenders	2.5776	2.0947
Number of Bank Lenders	1.3664	0.7512
Number of Retail Lenders	1.2112	1.3435
Credit Card Balance	1,161,896	688,890
Bank Credit Card Balance	754,837	375,561
Retail Credit Card Balance	407,059	313,329
Number of Lenders with Balance	1.5694	1.3747
Number of Bank Lenders with Balance	0.7478	0.4158
Number of Retail Lenders with Balance	0.8216	0.9588
Credit Card Balance/Limit	0.3088	0.4281
Bank Credit Card Balance/Limit	0.1795	0.1407
Retail Credit Card Balance/Limit	0.2622	0.4398
Credit Card Default	0.0211	0.0574
		・ * 注 * 注 * うへ()

Summary stats pre-transaction II

Bank Credit Card Default	0.0080	0.0076
Retail Credit Card Default	0.0146	0.0523
Panel B: Lender Credit Card Characteristic	S	
Lender Credit Card Limit	766,089	0
Has Lender Credit Card	1.0000	0.0000
Lender Credit Card Balance	207,001	0
Lender Credit Card Balance/Limit	0.3600	0.0000
Lender Credit Card Default	0.0239	0.0000
Panel C: Borrower Characteristics		
Monthly income	957,750	787,206
Income bin	1.6335	1.3256
Female	0.5842	0.5218
Married	0.7021	0.6152
Age	49.66	46.12
Individuals	191,190	328,829

Summary stats pre-transaction III

Regression

$$\textit{Outcome}_{i,t} = \sum_{\tau} \beta_{\tau} \textit{Lender}_i \times \delta_{\tau} + \textit{X}_{i,t} + \epsilon_{i,t}$$

- Individual i at bank j in quarter t
- t = 0 is the May-June-July 2015 quarter; omit quarter -2

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- X_{i,t} fixed effects: Individual and month
- Cluster at the individual level

$$\textit{Outcome}_{i,t} = \sum_{\tau} \beta_{\tau} \textit{Lender}_i \times \delta_{\tau} + \textit{X}_{i,t} + \epsilon_{i,t}$$

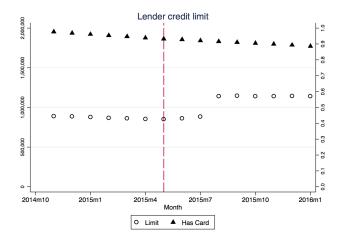
	(1)	(2)	(3)	(4)	(5)
	Limit	Number Lenders	Balance	<u>Balance</u> Limit	Default
Lender × t_{-1}	-34, 154.68*** (3,308.29)				
Lender × t_0	11,064.13*				
Lender $\times t_1$	(5,755.04) 99,830.17***				
Lender × t_2	(7,555.16) 156,269.53***				
Dep. variable Mean	(12,128.98) 2,383,359				
Observations	7,569,285				
R-squared	0.95				
Clusters	504.619				

$$\textit{Outcome}_{i,t} = \sum_{\tau} \beta_{\tau} \textit{Lender}_i \times \delta_{\tau} + \textit{X}_{i,t} + \epsilon_{i,t}$$

	(1)	(2)	(3)	(4)	(5)
	Limit	Number Lenders	Balance	<u>Balance</u> Limit	Default
Lender × t_{-1}	-34, 154.68***	-0.0057***			
	(3,308.29)	(0.0005)			
Lender × t ₀	11,064.13*	-0.0123***			
	(5,755.04)	(0.0009)			
Lender $\times t_1$	99,830.17***	-0.0196***			
	(7,555.16)	(0.0011)			
Lender $\times t_2$	156,269.53***	-0.0254***			
	(12,128.98)	(0.0013)			
Dep. variable Mean	2,383,359	0.9499			
Observations	7,569,285	7,569,285			
R-squared	0.95	0.96			
Clusters	504.619	504.619			

$$\textit{Outcome}_{i,t} = \sum_{\tau} \beta_{\tau} \textit{Lender}_i \times \delta_{\tau} + \textit{X}_{i,t} + \epsilon_{i,t}$$

	(1)	(2)	(3)	(4)	(5)
	Limit	Number Lenders	Balance	<u>Balance</u> Limit	Default
Lender × t_{-1}	-34, 154.68***	-0.0057***	2,441.10	-0.0000	
	(3,308.29)	(0.0005)	(2,349.96)	(0.0005)	
Lender × t ₀	11,064.13*	-0.0123***	819.55	-0.0028***	
	(5,755.04)	(0.0009)	(3,609.71)	(0.0007)	
Lender $\times t_1$	99,830.17***	-0.0196***	-5,395.71	-0.0028***	
	(7,555.16)	(0.0011)	(4,287.44)	(0.0007)	
Lender $\times t_2$	156, 269.53***	-0.0254***	10, 143.54**	-0.0028***	
	(12,128.98)	(0.0013)	(4,820.12)	(0.0007)	
Dep. variable Mean	2,383,359	0.9499	548,984	0.2819	
Observations	7,569,285	7,569,285	7,569,285	4,310,800	
R-squared	0.95	0.96	0.87	0.83	
Clusters	504,619	504,619	504,619	305,165	


$$\textit{Outcome}_{i,t} = \sum_{\tau} \beta_{\tau} \textit{Lender}_i \times \delta_{\tau} + \textit{X}_{i,t} + \epsilon_{i,t}$$

	(1)	(2)	(3)	(4)	(5)
	Limit	Number Lenders	Balance	<u>Balance</u> Limit	Default
Lender × t_{-1}	-34, 154.68***	-0.0057***	2,441.10	-0.0000	-0.0047***
	(3,308.29)	(0.0005)	(2,349.96)	(0.0005)	(0.0003)
Lender × t ₀	11,064.13*	-0.0123***	819.55	-0.0028***	-0.0073***
	(5,755.04)	(0.0009)	(3,609.71)	(0.0007)	(0.0003)
Lender $\times t_1$	99,830.17***	-0.0196***	-5,395.71	-0.0028***	-0.0088***
	(7,555.16)	(0.0011)	(4,287.44)	(0.0007)	(0.0003)
Lender × t ₂	156,269.53***	-0.0254***	10, 143.54**	-0.0028***	-0.0110***
	(12,128.98)	(0.0013)	(4,820.12)	(0.0007)	(0.0004)
Dep. variable Mean	2,383,359	0.9499	548,984	0.2819	0.0109
Observations	7,569,285	7,569,285	7,569,285	4,310,800	4,310,800
R-squared	0.95	0.96	0.87	0.83	0.36
Clusters	504,619	504,619	504,619	305,165	305,165

Robustness

- No result for retail lending
- Condition on non-defaulters
- Replace individual fixed-effects for fixed effects constructed by the interaction of 5-year age bins, marital status, income bin, retail default status, retail credit limit deciles, bank credit limit deciles, number of bank accounts, and total number of accounts

Lender increases limits

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

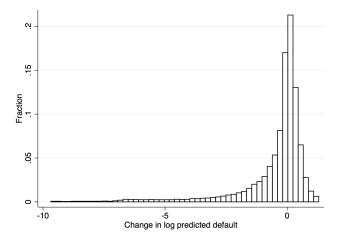
Lender increases limits (2)

$$\textit{Outcome}_{i,t} = \sum_{ au} eta \delta_{ au} + X_{i,t} + \epsilon_{i,t}$$

	(1)	(2)	(3)	(4)	(5)
	Limit	Has	Balance	Balance	Default
		Card		Limit	
t_1	$-23, 136.54^{***}$	-0.0223***	-9,319.92***	0.0006	0.0117***
	(454.06)	(0.0003)	(377.28)	(0.0004)	(0.0003)
t ₀	$-18,733.42^{***}$	-0.0419***	$-16,018.72^{***}$	-0.0001	0.0182***
	(663.95)	(0.0004)	(544.88)	(0.0006)	(0.0003)
t1	258, 318.89***	-0.0582***	$-17,610.90^{***}$	-0.0057***	0.0220***
	(2,994.57)	(0.0005)	(701.15)	(0.0006)	(0.0003)
t ₂	257,882.71***	-0.0758***	562.35	0.0160***	0.0245***
	(3,051.73)	(0.0006)	(890.12)	(0.0007)	(0.0003)
Dep. variable Mean	852,809	0.9377	200,998	0.3217	0.0194
Observations	2,696,190	2,696,190	2,696,190	2,501,668	2,501,668
R-squared	0.83	0.75	0.83	0.78	0.44
Clusters	179,746	179,746	179,746	174,458	174,458

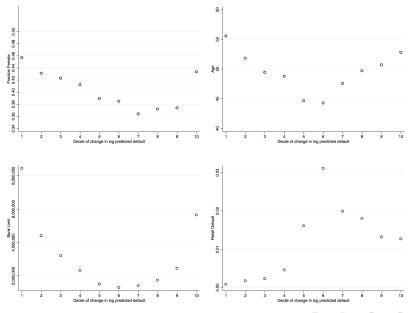
Inspecting the mechanism

- Banks increase lending because their expectation of costs shifts
- Pre-period: Lender borrowers are pooled with non-borrowers (not observable in our sample)
- Post-period: Lender borrowers separate
- Ideal test would compare this heterogeneity, but we cannot observe non-borrowers
- We approximate by looking at change in predicted costs within the Lender's borrowers (following Liberman, Nielson, Opazo, Zimmerman 2018)


Change in predicted costs

- For each of the Lender's borrowers, compute two predictions of costs:

Compute change in predicted costs as


$$log\left(\hat{C}_{i,post}
ight) - log\left(\hat{C}_{i,pre}
ight)$$

Histogram of change in predicted costs


▲ロト ▲園ト ▲ヨト ▲ヨト ニヨー のへ(で)

Who sees a drop in costs?

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへで

What about new info?

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Regression test

► Define Drop in costs =
$$1 \left[log \left(\hat{C}_{i,post} \right) - log \left(\hat{C}_{i,pre} \right) < 0 \right]$$

Run diff-in-diffs interacting quarter dummies with Drop in costs

$$\textit{Outcome}_{i,t} = \sum_{ au} eta \delta_{ au} imes \textit{Drop}_i + \textit{X}_{i,t} + \epsilon_{i,t}$$

	(1)	(2)	(3)	(4)	(5)
	Limit	Number	Balance	Balance	Default
		Lenders		Limit	
Pred. Def. Drops $\times t_{-1}$	7,172.54	0.0114***	38.05	-0.0066***	-0.0056***
	(5,976.89)	(0.0009)	(4,214.01)	(0.0008)	(0.0004)
Pred. Def. Drops $\times t_0$	90,747.69***	0.0215***	-1,081.09	-0.0108***	-0.0078***
	(10,492.30)	(0.0015)	(6,531.98)	(0.0010)	(0.0004)
Pred. Def. Drops $\times t_1$	195, 166.12***	0.0322***	1,181.02	-0.0117***	-0.0102***
	(13,714.48)	(0.0019)	(7,709.91)	(0.0011)	(0.0005)
Pred. Def. Drops $\times t_2$	288, 236.26***	0.0437***	16,488.04*	-0.0149***	-0.0119***
	(23,948.84)	(0.0022)	(8,682.72)	(0.0012)	(0.0005)
Dep. variable Mean	3,641,122	1.3307	810,628	0.2542	0.0080
Observations	2,500,260	2,500,260	2,500,260	1,825,368	1,825,368
R-squared	0.93	0.96	0.86	0.82	0.34
Clusters	166,684	166,684	166,684	126,252	126,252

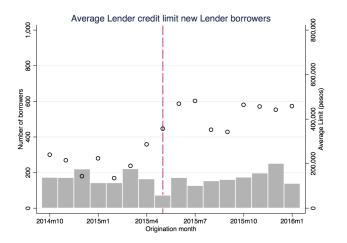
First test: summary

- Lender's borrowers receive higher limits from their banks after the transaction; no effect at extensive margin: existing banks
 - Lender's borrowers are more likely to have a bank, more attrition over time
 - Lender becomes a bank
- Banks willing to lend to consumers who <u>do not</u> want to borrow more (Agarwal et al 2018)

 Effect is driven by Lender's borrowers whose predicted costs decrease

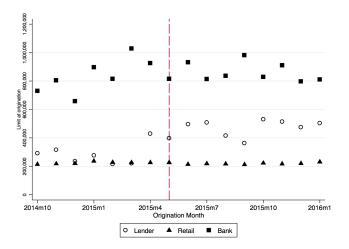
First test: summary

- Lender's borrowers receive higher limits from their banks after the transaction; no effect at extensive margin: existing banks
 - Lender's borrowers are more likely to have a bank, more attrition over time
 - Lender becomes a bank
- Banks willing to lend to consumers who <u>do not</u> want to borrow more (Agarwal et al 2018)


- Effect is driven by Lender's borrowers whose predicted costs decrease
- Lender also increases limits, and very limited effects on borrowing

Second test: new borrowers

- Next, we condition on the sample of new borrowers whose first card was originated by the Lender
- According to the framework, we expect that after the transaction, the Lender originates cards to safer borrowers with higher initial limits


As in the first test, we control for secular trends with the evolution of outcomes for non-Lender new retail borrowers

Lender originates higher limits

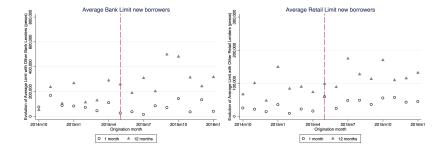
◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

Lender starts originating "more like a bank"

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

Lender originates higher limits...

$$\textit{Outcome}_{i,t} = \sum_{\tau} \beta_{\tau} \textit{Lender}_i \times \delta_{\tau} + \textit{X}_{i,t} + \epsilon_{i,t}$$


	(1)	(2)	(3)	(4)
	Limit	Balance	Balance	Default in
			Limit	1 year
Lender × t_{-1}	3, 514.58	-17,840.03***	-0.0589**	-0.0452*
	(22,726.29)	(6,053.82)	(0.0248)	(0.0255)
Lender $\times t_0$	249,640.27***	37, 172.81***	-0.0662**	-0.0196
	(31,057.14)	(9,805.51)	(0.0259)	(0.0281)
Lender $\times t_1$	186, 294.05***	49,366.56***	-0.0282	-0.0500*
	(24,463.20)	(9,184.43)	(0.0238)	(0.0256)
Lender $\times t_2$	241,275.00***	61,213.59***	-0.0552^{**}	-0.0344
	(24,478.14)	(9,958.12)	(0.0225)	(0.0248)
Dep. variable Mean	209,596	92,618	0.4840	0.2856
Observations	70,363	70,363	70,363	70,363
R-squared	0.0246	0.0056	0.0131	0.0025

...to safer borrowers

$$\textit{Outcome}_{i,t} = \sum_{\tau} \beta_{\tau} \textit{Lender}_i \times \delta_{\tau} + X_{i,t} + \epsilon_{i,t}$$

	(1)	(2)	(3)	(4)	(5)
	Age	Income bin	In income bin 1	Female	Married
Lender $\times t_{-1}$	0.05	-0.0158	0.0004	-0.0244	0.0021
	(0.96)	(0.0281)	(0.0197)	(0.0305)	(0.0305)
Lender \times t ₀	-2.18**	0.0232	-0.0316	-0.0593*	-0.0285
	(1.02)	(0.0359)	(0.0229)	(0.0329)	(0.0325)
Lender \times t_1	-2.04**	0.0162	-0.0252	-0.1041***	0.0104
	(0.90)	(0.0275)	(0.0201)	(0.0302)	(0.0301)
Lender $\times t_2$	0.90	0.0448	-0.0532***	-0.1671***	0.0449
	(0.87)	(0.0302)	(0.0201)	(0.0285)	(0.0288)
Dep. variable Mean	40	1.0737	0.9007	0.5115	0.4560
Observations	69,805	67,735	70,363	70,363	70,363
R-squared	0.0034	0.0021	0.0020	0.0026	0.0024

Other retailers and banks limits

▲□▶ ▲圖▶ ▲ 臣▶ ★ 臣▶ ― 臣 … のへで

Other retailers and banks limits

$$\textit{Outcome}_{i,t} = \sum_{\tau} \beta_{\tau} \textit{Lender}_i \times \delta_{\tau} + \textit{X}_{i,t} + \epsilon_{i,t}$$

	(1)	(2)	(3)	(4)		
	Retail	Limit	Has Ret	Has Retail Limit		
	Month 1	Month 12	Month 1	Month 12		
Lender $\times t_{-1}$	-3,857.21	-334.61	-0.0304**	0.0410*		
	(5,812.67)	(13,773.50)	(0.0154)	(0.0236)		
Lender $\times t_0$	19,885.77**	39,855.89**	0.0359*	0.1065***		
	(8,857.62)	(16,849.47)	(0.0208)	(0.0280)		
Lender $\times t_1$	20,446.06**	42,544.41**	0.0203	0.0928***		
	(9,286.87)	(17,912.39)	(0.0185)	(0.0253)		
Lender $\times t_2$	21, 121.84***	30,699.00*	0.0441**	0.0625***		
	(7,414.50)	(15, 858.09)	(0.0188)	(0.0235)		
Dep. variable Mean	23,238	65,131	0.0955	0.2023		
Observations	70,383	70,475	70,383	70,475		
R-squared	0.00	0.00	0.00	0.00		

Other retailers and banks limits

$$Outcome_{i,t} = \sum_{\tau} \beta_{\tau} Lender_i \times \delta_{\tau} + X_{i,t} + \epsilon_{i,t}$$

	(1)	(2)	(3)	(4)	
	Ban	k Limit	Has Ba	Has Bank Limit	
	Month 1	Month 12	Month 1	Month 12	
Lender × t_{-1}	13,776.23	-2,295.32	-0.0095	-0.0008	
	(34,184.26)	(54,772.11)	(0.0100)	(0.0191)	
Lender $\times t_0$	-8,290.42	44,049.83	-0.0008	0.0531**	
	(13,446.94)	(60,414.38)	(0.0125)	(0.0242)	
Lender $\times t_1$	74, 181.40*	199, 431.05**	0.0285**	0.0624***	
	(40,345.74)	(88,945.67)	(0.0136)	(0.0222)	
Lender $\times t_2$	38,840.45	70,090.91	0.0068	0.0756***	
	(48,118.55)	(45,636.63)	(0.0116)	(0.0214)	
Dep. variable Mean	22,390	116,729	0.0293	0.1413	
Observations	70,383	70,475	70,383	70,475	
R-squared	0.00	0.00	0.00	0.00	

Revisiting assumption: small effect on rates

$$Outcome_{i,t} = \sum_{\tau} \beta_{\tau} Lender_i \times \delta_{\tau} + X_{i,t} + \epsilon_{i,t}$$

	(1)	(2)	(3)	(4)
	Rate	Rate	Rate	Rate
Lender × t_{-1}	-0.0065	-0.0058	-0.1141	0.0014
	(0.1262)	(0.0708)	(0.1926)	(0.1603)
Lender $\times t_0$	-0.0817	-0.0547	-0.1760	-0.0820
	(0.1270)	(0.0736)	(0.1905)	(0.1617)
Lender $\times t_1$	-0.0973	-0.0290	-0.2451	-0.1709
	(0.1272)	(0.0885)	(0.1883)	(0.1578)
Lender $\times t_2$	-0.1883^{*}	-0.0990	-0.0861	-0.1600
	(0.1132)	(0.0670)	(0.1648)	(0.1354)
Control group	Retailer	Retail	Banks	Banks
Fixed effect		YES		YES
Dep. variable Mean	4.0374	4.0374	3.3769	3.3769
Observations	819,589	819,586	1,276,302	1,276,229
R-squared	0.0040	0.4580	0.0574	0.3868
Clusters	450	450	620	620

Second test: summary

- Lender shifts originations to new borrowers who seem safer
- New borrowers receive higher limits from retailers and from banks
 - Not an information effect: all of the Lender's new borrowers, pre- and post-transaction, are observable by banks

Lender originates limits with higher credit cards, to borrowers who borrow more

Second test: summary

- Lender shifts originations to new borrowers who seem safer
- New borrowers receive higher limits from retailers and from banks
 - Not an information effect: all of the Lender's new borrowers, pre- and post-transaction, are observable by banks

- Lender originates limits with higher credit cards, to borrowers who borrow more
- Consistent with credit registry restricting access to credit to good borrowers pooled in riskier populations

Conclusion

Conclusion

- We show theoretically how a credit registry may improve allocations for observably safer borrowers, and restrict access to populations with higher degrees of information asymmetry
- We compare new credit card borrowers for lenders who operate under a full credit registry-banks- with new credit card borrowers for lenders who operate under a limited information sharing agreement-retailer
 - Retailers lend lower initial limits that increase more to poorer borrowers, who default more
- We exploit a natural experiment by which a retailer's portfolio became a bank portfolio
 - Lender's borrowers get more credit from banks, new borrowers

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・