Conclusion O

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Optimal Capital Requirement with Noisy Signals on Banking Risk

Kai Ding Enoch Hill David Perez-Reyna

Cal State East Bay

Wheaton College

Universidad de los Andes

November 16th, 2018

Introduction
00000

- Frequently referred cause of 2008 financial crisis: excessive risk taking
- However, take MBS
 - If risk was known, prices would have taken that into account
 - Problem: were considered safe but risk was higher
- We analyze optimal capital requirements in an environment with various degrees of asymmetric information between financial institutions and investors
- Capital requirements in our model are leverage constraints, λ ,

Conclusion O

Our model

- Banks that borrow from depositors to invest in a risky technology
 - Each bank has access to a single investment project with different level of risk
 - Banks have limited liability
- We consider various degrees of asymmetric information
 Full information: depositors observe risk of each bank
 - Imperfect information: depositors observe imprecise signal of risk of each bank

Conclusion O

Our model

- Leverage constraints don't replace the role of market prices (deposit rates)
 - Leverage constraints supplement market prices when there are market failures, caused by asymmetric information
- Optimal leverage constraints are based on the severity of incomplete information (variance of risk) rather than average risk
 - Noisier signals lead to greater pooling in deposit rates, so a stricter leverage constraint is needed

M<mark>odel</mark> ooooooooooooooooooo Conclusion O

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Mechanism

If depositors observe risk of bank:

- deposit rate incorporates this risk
- riskier banks take less deposits (more expensive for them)

Conclusion O

Mechanism

If depositors observe an imprecise signal of risk

- All banks with same signal will be perceived with same risk, so charge the same deposit rate
 - Riskier banks are more leveraged than efficient
 - Safer banks are inefficiently small
- Ieverage constraint
 - limits leverage of riskier banks
 - · aggregate deposits are less risky, so deposit rate is lower
 - safer banks take more deposits
- If signal is noisier, there is more pooling, so a tighter leverage constraint is needed

Introd	luction
0000	00

Related literature

- Effects of capital requirements: Begenau and Landvoigt (2016), Diamond and Rajan (2000), Van den Heuvel (2008). We focus on a different dimension for capital requirements: variance of risk
- Effect of macroprudential capital regulation on banks: Begenau (2015), Corbae and D'Erasmo (2014), Martinez-Miera and Suarez (2014), Nguyen (2014). We focus on the role that capital requirements play on cross-subsidization across banks
- Misallocation: Buera et al (2011); Hsieh and Klenow (2009, 2014); Restuccia and Rogerson (2008). In our model all banks face same expected return, but not lend the same quantity

Conclusion O

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Our model

- One-period model
- Unit measure of banks
 - Endowed with *E* capital
 - Each bank has access to a single investment project with common mean return but different level of risk
 - Limited liability
- Deep-pocketed and risk neutral depositors
 Access to R_f
- Benevolent policymaker that chooses λ

 Conclusion O

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Banks

- Are indexed by $\rho \in [\rho_L, \rho_H]$
- Have access to an investment project with risky return given by

$$R(\rho) = \begin{cases} \frac{1}{\rho} & \text{with prob } \rho \\ 0 & \text{with prob } 1 - \rho \end{cases}$$

- Can only invest in their own project
- Use their E and can accept deposits $D(\rho)$ at interest rate $R^D(\rho)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

Banks

- Subject to limited liability
- Cost of $c(I) = \frac{I^2}{2\varphi}$ to manage I = E + D units of investment
- Expected profits

$$\Pi(\rho) = \max_{D} \rho \left[\frac{1}{\rho} \left((E+D) - c \left(E+D \right) \right) - R^{D} D \right]$$

Introduction
000000

First-Best Benchmark

- Benevolent planner perfectly observes the risk of banks and dictates how many deposits they accept
 - Socially efficient allocations

$$\max_{D} \rho \frac{1}{\rho} \left((E+D) - c \left(E+D \right) \right) - R_{\rm f} D,$$

Optimally deposits don't depend on ρ

$$D^{FB}(\rho) = \varphi(1-R_f) - E, \forall \rho.$$

 Conclusion O

Scenario 1

Competitive equilibrium with perfect information

- Depositors perfectly observe ρ : $R^{D}(\rho) = \frac{R_{f}}{\rho}$
- Expected profits

$$\Pi(\rho) = \max_{D} \rho \left[\frac{1}{\rho} \left((E+D) - c (E+D) \right) - R^{D}(\rho) D \right]$$

• The risk of banks is perfectly priced into deposit rates

$$D(\rho) = \varphi(1-R_f) - E.$$

 Conclusion O

Scenario 2

Competitive equilibrium with indistinguishable banks

- Single deposit rate
- Expected profits:

$$D(
ho) = rg\max_D
ho \left[rac{1}{
ho} \left((E+D) - c \left(E+D
ight)
ight) - R^D D
ight].$$

• The deposit rate R^D is actuarially fair:

$$R^D = \frac{R_f}{\bar{\rho}}$$

where $\bar{\rho} \equiv \frac{\int \rho D(\rho) dG(\rho)}{\int D(\rho) dG(\rho)}$

• The equilibrium leverage ratio is increasing in the risk of banks

$$D(
ho)=arphi(1-
ho R^D)-E$$
.

 Conclusion O

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

Equilibrium vs first-best investment

Risky banks borrow too much and safer banks borrow too little

Conclusion O

Leverage constraints

- Assume policy maker has access to λ such that $\frac{D}{E} \leq \lambda$
- Ramsey problem:

$$\max_{\lambda} \int \left[\rho \frac{1}{\rho} \left(E + D(\rho, \lambda) - c \left(E + D(\rho, \lambda) \right) \right) \right] dG(\rho) \\ - \int R_f D(\rho, \lambda) dG(\rho)$$

where

$$D(\rho, \lambda) = \min(\lambda E, \varphi(1 - \rho R^{D}(\lambda)) - E)$$
$$R^{D}(\lambda) = \frac{R_{f}}{\bar{\rho}(\lambda)} \quad \bar{\rho}(\lambda) = \frac{\int \rho D(\rho, \lambda) dG(\rho)}{\int D(\rho, \lambda) dG(\rho)}$$

Model

Conclusion O

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Optimal leverage ratio

Tightening causes risky banks to borrow less Direct effect is maximized for $\lambda = \frac{D^{FB}}{F}$

ρ

 Conclusion O

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

Optimal leverage constraint

Less risky deposits cause a lower R^D , so safe banks accept more deposits

Conclusion O

Optimal leverage constraint

$$\lambda^* \in \left(0, \frac{D^{FB}}{E}\right]$$

Conclusion O

Mechanism

Blue arrows: direct effect Purple arrows: GE effect

 Conclusion O

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Scenario 3

Partial information: noisy signal

- Depositors and policy-makers observe $\tilde{\rho} = \rho + \epsilon$, $\epsilon \sim H(\epsilon) \equiv N(0, \sigma^2)$
- Scenario 1 is $\sigma = 0$ and scenario 2 is $\sigma = \infty$

Ramsey problem

$$\max_{\lambda(\cdot)} \int_{\rho} \int_{\epsilon} \left[\frac{1}{\rho} \rho \left(I - c \left(I \right) \right) \right] dH(\epsilon) dG(\rho) - \int_{\rho} \int_{\epsilon} R_{f} D\left(\rho, \tilde{\rho}; \lambda\left(\cdot \right) \right) dH(\epsilon) dG(\rho) \text{s.t.} I = E + D\left(\rho, \tilde{\rho}; \lambda\left(\cdot \right) \right) \tilde{\rho} = \rho + \epsilon$$

 Conclusion O

Scenario 3

Deposits

$$D(\rho, \tilde{\rho}; \lambda(\cdot)) = \min(\lambda(\tilde{\rho}) E, \varphi(1 - \rho R^{D}(\tilde{\rho}; \lambda(\cdot))) - E).$$

• Deposit rate

$$R^{D}\left(ilde{
ho};\lambda\left(\cdot
ight)
ight)=rac{R_{f}}{ar{
ho}\left(ilde{
ho};\lambda\left(\cdot
ight)
ight)}$$

where

$$\bar{\rho}(\tilde{\rho};\lambda(\cdot)) \equiv \frac{E_{\epsilon}\left[\rho D\left(\rho,\tilde{\rho};\lambda(\cdot)\right)|\rho+\epsilon=\tilde{\rho}\right]}{E_{\epsilon}\left[D\left(\rho,\tilde{\rho};\lambda(\cdot)|\rho+\epsilon=\tilde{\rho}\right]}$$

 Actual problem is not so cumbersome: decision of banks only affects banks with the same signal

Model

Conclusion O

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

Optimal λ

No noise: any λ high enough works

Model

Conclusion O

Optimal λ

High noise: tightest λ is needed

 Conclusion O

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

Optimal λ

Some noise: λ is tightest when signal is less informative

Model 000000000000000

Conclusion O

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

Optimal λ

No noise: R^D perfectly accounts for risk

Model 000000000000000

Conclusion O

Optimal λ

High noise: R^D gives no info

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Model 000000000000000 Conclusion O

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

Optimal λ

Some noise: λ complements role of R^D in accounting for risk

Introduction
000000

Conclusion

- We characterize the optimal leverage constraint in a model where banks face heterogeneous risk that is partially observable to depositors and policymakers
- With asymmetric information there is cross-subsidization:
 Risky banks take too many deposits, safe banks too few
- Leverage constraints complement role of R^D in accounting for risk
- When risk signal is less informative it is optimal to have tighter leverage constraints